Abstract
1. A sensitive fluorimetric procedure for the assay of d-amino acid oxidase has been developed. 2. The method depends on the formation of a fluorescent derivative, 2-hydroxy-3-methylquinoxaline, on condensation of pyruvate with o-phenylenediamine in acid medium. 3. 2-Hydroxy-3-methylquinoxaline fluoresces strongly in 50% (v/v) sulphuric acid after excitation at 375mμ. A single emission peak is observed at 480mμ. 4. Formation of the quinoxaline is dependent on time, temperature, acidity and relative concentration of reactants. 5. A particulate preparation from mouse kidney required FAD for optimum activity at pH8·5; Km was 3·8×10−3m; KFAD was 1·4×10−7m and the reaction was strongly inhibited by p-chloromercuribenzoate and phenylmercuric acetate. 6. Subcellular fractionation on a sucrose density gradient confirmed that the d-amino acid oxidase was localized on small granules.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ADAMS D. H., BURGESS E. A. The effect of the degree of homogenization on the catalase activity of liver homogenates. Br J Cancer. 1957 Jun;11(2):310–325. doi: 10.1038/bjc.1957.39. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BURTON K. The stabilization of D-amino acid oxidase by flavin-adenine dinucleotide, substrates and competitive inhibitors. Biochem J. 1951 Apr;48(4):458–467. doi: 10.1042/bj0480458. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baudhuin P., Beaufay H., De Duve C. Combined biochemical and morphological study of particulate fractions from rat liver. Analysis of preparations enriched in lysosomes or in particles containing urate oxidase, D-amino acid oxidase, and catalase. J Cell Biol. 1965 Jul;26(1):219–243. doi: 10.1083/jcb.26.1.219. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baudhuin P., Beaufay H., Rahman-Li Y., Sellinger O. Z., Wattiaux R., Jacques P., De Duve C. Tissue fractionation studies. 17. Intracellular distribution of monoamine oxidase, aspartate aminotransferase, alanine aminotransferase, D-amino acid oxidase and catalase in rat-liver tissue. Biochem J. 1964 Jul;92(1):179–184. doi: 10.1042/bj0920179. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beaufay H., Jacques P., Baudhuin P., Sellinger O. Z., Berthet J., De Duve C. Tissue fractionation studies. 18. Resolution of mitochondrial fractions from rat liver into three distinct populations of cytoplasmic particles by means of density equilibration in various gradients. Biochem J. 1964 Jul;92(1):184–205. doi: 10.1042/bj0920184. [DOI] [PMC free article] [PubMed] [Google Scholar]
- COOPERSTEIN S. J., LAZAROW A. A microspectrophotometric method for the determination of cytochrome oxidase. J Biol Chem. 1951 Apr;189(2):665–670. [PubMed] [Google Scholar]
- DE DUVE C., BERTHET J. Reproducibility of differential centrifugation experiments in tissue fractionation. Nature. 1953 Dec 19;172(4390):1142–1142. doi: 10.1038/1721142a0. [DOI] [PubMed] [Google Scholar]
- FRISELL W. R., HELLERMAN L. The sulfhydryl character of D-amino acid oxidase. J Biol Chem. 1957 Mar;225(1):53–62. [PubMed] [Google Scholar]
- GABAY S., HARRIS S. R. STUDIES OF FLAVIN ADENINE DINUCLEOTIDE-REQUIRING ENZYMES AND PHENOTHIAZINES-I. INTERACTIONS OF CHLORPROMAZINE AND D-AMINO ACID OXIDASE. Biochem Pharmacol. 1965 Jan 1;14:17–26. doi: 10.1016/0006-2952(65)90053-5. [DOI] [PubMed] [Google Scholar]
- HELLERMAN L., COFFEY D. S., NEIMS A. H. STUDIES ON CRYSTALLINE D-AMINO ACID OXIDASE. I. SELECTIVE INHIBITION IN THE ACTION OF SULFHYDRYL-BINDING REAGENTS. J Biol Chem. 1965 Jan;240:290–298. [PubMed] [Google Scholar]
- KLEIN J. R. Inhibition of D-amino acid oxidase by aromatic acids. J Biol Chem. 1953 Dec;205(2):725–730. [PubMed] [Google Scholar]
- Krebs H. A. Metabolism of amino-acids: Deamination of amino-acids. Biochem J. 1935 Jul;29(7):1620–1644. doi: 10.1042/bj0291620. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- PAIGEN K. The occurrence of several biochemically distinct types of mitochondria in rat liver. J Biol Chem. 1954 Feb;206(2):945–957. [PubMed] [Google Scholar]
- TONHAZY N. E., WHITE N. G., UMBREIT W. W. A rapid method for the estimation of the glutamic-aspartic transaminase in tissues and its application to radiation sickness. Arch Biochem. 1950 Aug;28(1):36–42. [PubMed] [Google Scholar]
- VERITY M. A., CAPER R., BROWN W. J. SPECTROFLUOROMETRIC DETERMINATION OF BETA-GLUCURONIDASE ACTIVITY. Arch Biochem Biophys. 1964 Jul 20;106:386–393. doi: 10.1016/0003-9861(64)90205-x. [DOI] [PubMed] [Google Scholar]
- YAGI K., OZAWA T. Complex formation of apo-enzyme, co-enzyme and substrate of D-amino acid oxidase. I. Kinetic analysis using indicators. Biochim Biophys Acta. 1960 Aug 26;42:381–387. doi: 10.1016/0006-3002(60)90815-5. [DOI] [PubMed] [Google Scholar]
