Abstract
1. A technique is described for continuously recording the concentration of carbon dioxide in mitochondrial suspensions. 2. The oxidation of palmitoylcarnitine by rat-liver mitochondria inhibits the oxidation of pyruvate and isocitrate, and stimulates the carboxylation of pyruvate. 3. These effects of palmitoylcarnitine oxidation are reversed by the uncoupling agent pentachlorophenol. 4. The effects of palmitoylcarnitine oxidation and pyruvate oxidation on the acylation of mitochondrial coenzyme A and reduction of nicotinamide nucleotides were measured. 5. Control mechanisms are discussed for the interactions between palmitoylcarnitine oxidation and the tricarboxylic acid cycle in rat-liver mitochondria.
Full text
PDF














Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BORST P., SLATER E. C. The oxidation of glutamate by rat-heart sarcosomes. Biochim Biophys Acta. 1960 Jun 17;41:170–171. doi: 10.1016/0006-3002(60)90391-7. [DOI] [PubMed] [Google Scholar]
- BREMER J. Carnitine in intermediary metabolism. The metabolism of fatty acid esters of carnitine by mitochondria. J Biol Chem. 1962 Dec;237:3628–3632. [PubMed] [Google Scholar]
- CHANCE B., BALTSCHEFFSKY H. Respiratory enzymes in oxidative phosphorylation. VII. Binding of intramitochondrial reduced pyridine nucleotide. J Biol Chem. 1958 Sep;233(3):736–739. [PubMed] [Google Scholar]
- CHANCE B., WILLIAMS G. R. The respiratory chain and oxidative phosphorylation. Adv Enzymol Relat Subj Biochem. 1956;17:65–134. doi: 10.1002/9780470122624.ch2. [DOI] [PubMed] [Google Scholar]
- CHEN R. F., PLAUT G. W. ACTIVATION AND INHIBITION OF DPN-LINKED ISOCITRATE DEHYDROGENASE OF HEART BY CERTAIN NUCLEOTIDES. Biochemistry. 1963 Sep-Oct;2:1023–1032. doi: 10.1021/bi00905a020. [DOI] [PubMed] [Google Scholar]
- CLARK L. C., Jr, WOLF R., GRANGER D., TAYLOR Z. Continuous recording of blood oxygen tensions by polarography. J Appl Physiol. 1953 Sep;6(3):189–193. doi: 10.1152/jappl.1953.6.3.189. [DOI] [PubMed] [Google Scholar]
- Chappell J. B. The oxidation of citrate, isocitrate and cis-aconitate by isolated mitochondria. Biochem J. 1964 Feb;90(2):225–237. doi: 10.1042/bj0900225. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DANIELSON L., ERNSTER L. Demonstration of a mitochondrial energy-dependent pyridine nucleotide transhydrogenase reaction. Biochem Biophys Res Commun. 1963 Jan 18;10:91–96. doi: 10.1016/0006-291x(63)90274-2. [DOI] [PubMed] [Google Scholar]
- Garland P. B., Shepherd D., Yates D. W. Steady-state concentrations of coenzyme A, acetyl-coenzyme A and long-chain fatty acyl-coenzyme A in rat-liver mitochondria oxidizing palmitate. Biochem J. 1965 Nov;97(2):587–594. doi: 10.1042/bj0970587. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HATHAWAY J. A., ATKINSON D. E. THE EFFECT OF ADENYLIC ACID ON YEAST NICOTINAMIDE ADENINE DINUCLEOTIDE ISOCITRATE DEHYDROGENASE, A POSSIBLE METABOLIC CONTROL MECHANISM. J Biol Chem. 1963 Aug;238:2875–2881. [PubMed] [Google Scholar]
- HENNING H. V., SEUBERT W. ZUM MECHANISMUS DER GLUCONEOGENESE UND IHRER STEUERUNG. I. QUANTITATIVE BESTIMMUNG DER PYRUVATCARBOXYLASE IN ROHEXTRAKTEN DER RATTENLEBER. Biochem Z. 1964 Jul 29;340:160–170. [PubMed] [Google Scholar]
- Hathaway J. A., Atkinson D. E. Kinetics of regulatory enzymes: effect of adenosine triphosphate on yeast citrate synthase. Biochem Biophys Res Commun. 1965 Sep 8;20(5):661–665. doi: 10.1016/0006-291x(65)90452-3. [DOI] [PubMed] [Google Scholar]
- KEECH D. B., UTTER M. F. PYRUVATE CARBOXYLASE. II. PROPERTIES. J Biol Chem. 1963 Aug;238:2609–2614. [PubMed] [Google Scholar]
- KREBS H. THE CROONIAN LECTURE, 1963. GLUCONEOGENESIS. Proc R Soc Lond B Biol Sci. 1964 Mar 17;159:545–564. doi: 10.1098/rspb.1964.0019. [DOI] [PubMed] [Google Scholar]
- Kalkhoff R. K., Hornbrook K. R., Burch H. B., Kipnis D. M. Studies of the metabolic effects of acute insulin deficiency. II. Changes in hepatic glycolytic and krebs-cycle intermediates and pyridine nucleotides. Diabetes. 1966 Jul;15(7):451–456. doi: 10.2337/diab.15.7.451. [DOI] [PubMed] [Google Scholar]
- Lardy H. A., Paetkau V., Walter P. Paths of carbon in gluconeogenesis and lipogenesis: the role of mitochondria in supplying precursors of phosphoenolpyruvate. Proc Natl Acad Sci U S A. 1965 Jun;53(6):1410–1415. doi: 10.1073/pnas.53.6.1410. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MORRISON J. F., PETERS R. A. Biochemistry of fluoroacetate poisoning: the effect of fluorocitrate on purified aconitase. Biochem J. 1954 Nov;58(3):473–479. doi: 10.1042/bj0580473. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meldrum N. U., Roughton F. J. Carbonic anhydrase. Its preparation and properties. J Physiol. 1933 Dec 5;80(2):113–142. doi: 10.1113/jphysiol.1933.sp003077. [DOI] [PMC free article] [PubMed] [Google Scholar]
- OCHOA S., STERN J. R., SCHNEIDER M. C. Enzymatic synthesis of citric acid. II. Crystalline condensing enzyme. J Biol Chem. 1951 Dec;193(2):691–702. [PubMed] [Google Scholar]
- PARMEGGIANI A., BOWMAN R. H. REGULATION OF PHOSPHOFRUCTOKINASE ACTIVITY BY CITRATE IN NORMAL AND DIABETIC MUSCLE. Biochem Biophys Res Commun. 1963 Aug 1;12:268–273. doi: 10.1016/0006-291x(63)90294-8. [DOI] [PubMed] [Google Scholar]
- SANWAL B. D., ZINK M. W., STACHOW C. S. NICOTINAMIDE ADENINE DINUCLEOTIDE-SPECIFIC ISOCITRIC DEHYDROGENASE. A POSSIBLE REGULATORY PROTEIN. J Biol Chem. 1964 May;239:1597–1603. [PubMed] [Google Scholar]
- SEVERINGHAUS J. W., BRADLEY A. F. Electrodes for blood pO2 and pCO2 determination. J Appl Physiol. 1958 Nov;13(3):515–520. doi: 10.1152/jappl.1958.13.3.515. [DOI] [PubMed] [Google Scholar]
- STOW R. W., BAER R. F., RANDALL B. F. Rapid measurement of the tension of carbon dioxide in blood. Arch Phys Med Rehabil. 1957 Oct;38(10):646–650. [PubMed] [Google Scholar]
- Sauer F., Erfle J. D. On the mechanism of acetoacetate synthesis by guinea pig liver fractions. J Biol Chem. 1966 Jan 10;241(1):30–37. [PubMed] [Google Scholar]
- Shepherd D., Garland P. B. ATP controlled acetoacetate and citrate synthesis by rat liver mitochondria oxidising palmitoyl-carnitine, and the inhibition of citrate synthase by ATP. Biochem Biophys Res Commun. 1966 Jan 4;22(1):89–93. doi: 10.1016/0006-291x(66)90607-3. [DOI] [PubMed] [Google Scholar]
- Struck E., Ashmore J., Wieland O. Stimulierung der Gluconeogenese durch langkettige Fettsäuren und Glucagon. Biochem Z. 1965 Nov 5;343(1):107–110. [PubMed] [Google Scholar]
- Tubbs P. K., Garland P. B. Variations in tissue contents of coenzyme A thio esters and possible metabolic implications. Biochem J. 1964 Dec;93(3):550–557. doi: 10.1042/bj0930550. [DOI] [PMC free article] [PubMed] [Google Scholar]
- UTTER M. F., KEECH D. B. PYRUVATE CARBOXYLASE. I. NATURE OF THE REACTION. J Biol Chem. 1963 Aug;238:2603–2608. [PubMed] [Google Scholar]
- WIELAND O., WEISS L. Increase in liver acetyl-coenzyme A during ketosis. Biochem Biophys Res Commun. 1963 Feb 18;10:333–339. doi: 10.1016/0006-291x(63)90534-5. [DOI] [PubMed] [Google Scholar]
- WILLIAMS G. R. DYNAMIC ASPECTS OF THE TRICARBOXYLIC ACID CYCLE IN ISOLATED MITOCHONDRIA. Can J Biochem. 1965 May;43:603–615. doi: 10.1139/o65-070. [DOI] [PubMed] [Google Scholar]
- Walter P., Paetkau V., Lardy H. A. Paths of carbon in gluconeogenesis and lipogenesis. 3. The role and regulation of mitochondrial processes involved in supplying precursors of phosphoenolpyruvate. J Biol Chem. 1966 Jun 10;241(11):2523–2532. [PubMed] [Google Scholar]
