Abstract
1. The utilization of amino acids for gluconeogenesis by rat liver develops in postnatal life, reaching maximum activity at the fifth day. 2. The activity of aspartate transaminase shows a similar trend in postnatal development and the increased activity appears to be due to the soluble enzyme. 3. The activity of alanine transaminase is low in foetal and postnatal rat liver and increases in activity at about the twentieth day. 4. Aspartate, glutamate and alanine make a major contribution to gluconeogenesis in the postnatal rat liver.
Full text
PDF![744](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1390/1270478/a783ff5866c7/biochemj00742-0148.png)
![745](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1390/1270478/b1f86a90bcf5/biochemj00742-0149.png)
![746](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1390/1270478/d4273067ce93/biochemj00742-0150.png)
![747](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1390/1270478/7b0c394a9f22/biochemj00742-0151.png)
![748](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1390/1270478/d9df5e737ce1/biochemj00742-0152.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- AUERBACH V. H., WAISMAN H. A. Tryptophan peroxidase-oxidase, histidase, and transaminase activity in the liver of the developing rat. J Biol Chem. 1959 Feb;234(2):304–306. [PubMed] [Google Scholar]
- AWAPARA J., SEALE B. Distribution of transaminases in rat organs. J Biol Chem. 1952 Feb;194(2):497–502. [PubMed] [Google Scholar]
- BALLARD F. J., OLIVER I. T. Appearance of fructose-1,6-diphosphatase in post-natal rat liver. Nature. 1962 Aug 4;195:498–499. doi: 10.1038/195498a0. [DOI] [PubMed] [Google Scholar]
- BALLARD F. J., OLIVER I. T. CARBOHYDRATE METABOLISM IN LIVER FROM FOETAL AND NEONATAL SHEEP. Biochem J. 1965 Apr;95:191–200. doi: 10.1042/bj0950191. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BALLARD F. J., OLIVER I. T. Glycogen metabolism in embryonic chick and neonatal rat liver. Biochim Biophys Acta. 1963 Jun 4;71:578–588. doi: 10.1016/0006-3002(63)91130-2. [DOI] [PubMed] [Google Scholar]
- BURCH H. B., LOWRY O. H., KUHLMAN A. M., SKERJANCE J., DIAMANT E. J., LOWRY S. R., VON DIPPE P. Changes in patterns of enzymes of carbohydrate metabolism in the developing rat liver. J Biol Chem. 1963 Jul;238:2267–2273. [PubMed] [Google Scholar]
- Ballard F. J., Oliver I. T. Ketohexokinase, isoenzymes of glucokinase and glycogen synthesis from hexoses in neonatal rat liver. Biochem J. 1964 Feb;90(2):261–268. doi: 10.1042/bj0900261. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DAWKINS M. J. Autolytic changes in foetal liver. J Pathol Bacteriol. 1960 Apr;79:289–294. doi: 10.1002/path.1700790210. [DOI] [PubMed] [Google Scholar]
- KAFER E., POLLAK J. K. Amino acid metabolism of growing tissues. II. Alanine-glutamic acid transaminase activity of embryonic rat liver. Exp Cell Res. 1961 Jan;22:120–136. doi: 10.1016/0014-4827(61)90091-x. [DOI] [PubMed] [Google Scholar]
- KARMEN A. A note on the spectrometric assay of glutamic-oxalacetic transaminase in human blood serum. J Clin Invest. 1955 Jan;34(1):131–133. [PubMed] [Google Scholar]
- KENNEY F. T., KRETCHMER N. Hepatic metabolism of phenylalanine during development. J Clin Invest. 1959 Dec;38:2189–2196. doi: 10.1172/JCI103998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KRETCHMER N. Enzymatic patterns during development; an approach to a biochemical definition of immaturity. Pediatrics. 1959 Mar;23(3):606–617. [PubMed] [Google Scholar]
- KRETCHMER N., LEVINE S. Z., MCNAMARA H., BARNETT H. L. Certain aspects of tyrosine metabolism in the young. I. The development of the tyrosine oxidizing system in human liver. J Clin Invest. 1956 Feb;35(2):236–244. doi: 10.1172/JCI103268. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KRETCHMER N., MCNAMARA H. Certain aspects of tyrosine metabolism in the young. II. The tyrosine oxidizing system of fetal rat liver. J Clin Invest. 1956 Oct;35(10):1089–1093. doi: 10.1172/JCI103363. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lardy H. A., Paetkau V., Walter P. Paths of carbon in gluconeogenesis and lipogenesis: the role of mitochondria in supplying precursors of phosphoenolpyruvate. Proc Natl Acad Sci U S A. 1965 Jun;53(6):1410–1415. doi: 10.1073/pnas.53.6.1410. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MAKOFF R., BALDRIDGE R. C. THE METABOLISM OF HISTIDINE. LIVER-ENZYME CHANGES DURING DEVELOPMENT. Biochim Biophys Acta. 1964 Aug 19;90:282–286. doi: 10.1016/0304-4165(64)90190-4. [DOI] [PubMed] [Google Scholar]
- NAKATA Y., SUEMATSU T., SAKAMOTO Y. TRANSAMINASE ACTIVITIES IN SOME RAPIDLY GROWING TISSUE. J Biochem. 1964 Feb;55:199–201. [PubMed] [Google Scholar]
- TONHAZY N. E., WHITE N. G., UMBREIT W. W. A rapid method for the estimation of the glutamic-aspartic transaminase in tissues and its application to radiation sickness. Arch Biochem. 1950 Aug;28(1):36–42. [PubMed] [Google Scholar]
- WEBER G., CANTERO A. Glucose-6-phosphate utilization in hepatoma, regenerating and newborn rat liver, and in the liver of fed and fasted normal rats. Cancer Res. 1957 Nov;17(10):995–1005. [PubMed] [Google Scholar]
- Wise R. W., Oliver I. T. Plasma albumin synthesis during neonatal development of the rat. Biochem J. 1967 Mar;102(3):760–762. doi: 10.1042/bj1020760. [DOI] [PMC free article] [PubMed] [Google Scholar]