Abstract
The conditions under which soluble extracts prepared from mouse embryos incorporate [3H]thymidine 5′-triphosphate into polydeoxyribonucleotide have been studied. In common with similar preparations from other mammalian tissues, mouse-embryo DNA nucleotidyltransferase requires the four complementary deoxyribonucleoside 5′-triphosphates, primer DNA and a bivalent cation for activity. Unlike other mammalian DNA nucleotidyltransferases, the rate and extent of the incorporation of [3H]thymidine 5′-triphosphate is much greater with Mn2+ than with Mg2+ and, with either Mg2+ or Mn2+, maximum activity occurs at pH6·4. The difference between Mg2+ and Mn2+ varies markedly with pH, reaching a maximum of six- to eight-fold at pH6·4.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adler J., Lehman I. R., Bessman M. J., Simms E. S., Kornberg A. ENZYMATIC SYNTHESIS OF DEOXYRIBONUCLEIC ACID. IV. LINKAGE OF SINGLE DEOXYNUCLEOTIDES TO THE DEOXYNUCLEOSIDE ENDS OF DEOXYRIBONUCLEIC ACID. Proc Natl Acad Sci U S A. 1958 Jul 15;44(7):641–647. doi: 10.1073/pnas.44.7.641. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BOLLUM F. J. Calf thymus polymerase. J Biol Chem. 1960 Aug;235:2399–2403. [PubMed] [Google Scholar]
- BOLLUM F. J., POTTER V. R. Incorporation of thymidine into deoxyribonucleic acid by enzymes from rat tissues. J Biol Chem. 1958 Aug;233(2):478–482. [PubMed] [Google Scholar]
- Furlong N. B. Deoxyribonucleic acid polymerase from Walker 256 carcinosarcoma. Biochim Biophys Acta. 1965 Nov 8;108(3):489–500. doi: 10.1016/0005-2787(65)90040-7. [DOI] [PubMed] [Google Scholar]
- GREEN M., PINA M. Stimulation of the DNA-synthesizing enzymes of cultured human cells by vaccina virus infection. Virology. 1962 Aug;17:603–604. doi: 10.1016/0042-6822(62)90166-6. [DOI] [PubMed] [Google Scholar]
- IVES D. H., MORSE P. A., Jr, POTTER V. R. Feedback inhibition of thymodine kinase by thymodine triphosphate. J Biol Chem. 1963 Apr;238:1467–1474. [PubMed] [Google Scholar]
- KEIR H. M., BINNIE B., SMELLIE R. M. Factors affecting the primer for deoxyribonucleic acid polymerase. Biochem J. 1962 Mar;82:493–499. doi: 10.1042/bj0820493. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KEIR H. M. Stimulation and inhibition of deoxyribonucleic acid nucleotidyltransferase by oligodeoxyribonucleotides. Biochem J. 1962 Nov;85:265–276. doi: 10.1042/bj0850265. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MANTSAVINOS R., CANELLAKIS E. S. Studies on the biosynthesis of deoxyribonucleic acid by soluble mammalian enzymes. J Biol Chem. 1959 Mar;234(3):628–635. [PubMed] [Google Scholar]
- MANTSAVINOS R. STUDIES ON THE SYNTHESIS OF DEOXYRIBONUCLEIC ACID BY MAMMALIAN ENZYMES. I. INCORPORATION OF DEOXYRIBONUCLEOSIDE 5'-TRIPHOSPHATES INTO DEOXYRIBONUCLEIC ACID BY A PARTIALLY PURIFIED ENZYME FROM REGENERATING RAT LIVER. J Biol Chem. 1964 Oct;239:3431–3435. [PubMed] [Google Scholar]
- REICHARD P., CANELLAKIS Z. N., CANELLAKIS E. S. Studies on a possible regulatory mechanism for the biosynthesis of deoxyribonucleic acid. J Biol Chem. 1961 Sep;236:2514–2519. [PubMed] [Google Scholar]
- SMELLIE R. M., KEIR H. M., DAVIDSON J. N. Studies on the biosynthesis of deoxyribonucleic acid by extracts of mammalian cells. I. Incorporation of tritium-labelled thymidine. Biochim Biophys Acta. 1959 Oct;35:389–404. doi: 10.1016/0006-3002(59)90389-0. [DOI] [PubMed] [Google Scholar]
- Shepherd J. B., Keir H. M. Deoxyribonucleic acid nucleotidyltransferase from Landschütz ascites-tumour cells. Biochem J. 1966 May;99(2):443–453. doi: 10.1042/bj0990443. [DOI] [PMC free article] [PubMed] [Google Scholar]
