Skip to main content
Journal of Sichuan University (Medical Sciences) logoLink to Journal of Sichuan University (Medical Sciences)
. 2025 Sep 20;56(5):1380–1386. [Article in Chinese] doi: 10.12182/20250960509

四川地区血源性热带念珠菌分子流行病学研究及氟康唑耐药机制初探

Molecular Epidemiology and Fluconazole Resistance Mechanisms in Candida tropicalis Isolates From Bloodstream Infections in Sichuan, China

Weilin CHEN 1, Jie HOU 2, Liang PENG 2, Mei KANG 2, Ying MA 2,Δ
PMCID: PMC12709104  PMID: 41416145

Abstract

Objective

To analyze the molecular epidemiology of Candida tropicalis (C. tropicalis) isolates from bloodstream infections, and to investigate preliminarily the underlying mechanisms of fluconazole resistance.

Methods

Clinical C. tropicalis isolates were collected from bloodstream infections at West China Hospital, Sichuan University and other hospitals in Sichuan Province. All the collected isolates were identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, and the antifungal susceptibility test was performed by the broth microdilution method. Multilocus sequence typing (MLST) was conducted using the first generation sequencing technique. Genes associated with drug-resistance were sequenced and the mutation sites were identified. The relative expression levels of genes associated with drug-resistance were analyzed using reverse transcription-quantitative polymerase chain reaction (RT-qPCR).

Results

A total of 39 C. tropicalis isolates from bloodstream infections were collected. The MLST phylogenetic tree showed that most of the strains clustered in the phylogenetic tree shared identical or similar minimal inhibitory concentrations (MICs). All MLST types were not matched with the isolates in the PubMLST database, representing new diploid sequence types (DSTs). A total of 3 sense mutations, including Ser154Phe, Tyr132Phe, and Tyr257His were identified in ERG11, and were present only in drug-resistant strains. UPC2 contained 4 sense mutations, including Ala251Thr, Gln289Leu, Ser279Glu, and Gln313His, which were also present only in drug-resistant strains. Ser279Glu and Gln313His were previously unreported. There were two sense mutations in ERG3, namely Ser112Gly and Ala48Ser, both being previously unreported, and Ser112Gly was found only in drug-resistant strains. The expression levels of ERG11 (14.48 vs 7.109, P = 0.003) and UPC2 (1.922 vs 0.832, P = 0.04) in non-sensitive group (MIC > 2 mg/L) were higher than those in sensitive group (MIC ≤ 2 mg/L), and the difference was statistically significant.

Conclusion

There may be a unique genetic relationship among C. tropicalis isolates from Sichuan province, and the MICs of fluconazole against C. tropicalis are associated with molecular typing. ERG11 mutations were the major mechanism underlying fluconazole resistance in C. tropicalis isolates. The upregulation of ERG11 and UPC2 was associated with fluconazole resistance in C. tropicalis.

Keywords: Candida tropicalis, Fluconazole, Drug resistance mechanism, Molecular epidemiology


念珠菌血症是医院最常见的院内真菌感染,发病率超过3/10万和死亡率超过35%[1-2]。氟康唑曾被广泛用于抗真菌感染的一线治疗,长期使用可能会导致热带念珠菌对其敏感性降低[3]。全国真菌病监测网数据显示,2019–2021年四川省热带念珠菌对氟康唑的耐药率为43.4%,且逐年上升,血流感染来源的热带念珠菌对氟康唑的耐药情况在四川地区较为严重[4]。多位点序列分型(multilocus sequence typing, MLST)可对热带念珠菌6个管家基因部分的序列进行等位基因编号,从而得到独特的二倍体序列类型(diploid sequence types, DSTs),可用于分析热带念珠菌分离株之间的相似性和假定的遗传关系。有研究已通过使用该方法揭示了大多数唑类耐药的热带念珠菌聚集在少数基因群中,特别是亚太地区发现的菌株[5-6]。甾醇14α-去甲基酶基因(cytochrome P450 lanosterol 14α-demethylase gene, ERG11)基因编码羊毛甾醇14a-去甲基化酶(Erg11p),三唑类药物以此为作用靶点,可阻断细胞膜成分麦角甾醇的生物合成,破坏细胞膜的流动性和完整性,最终导致真菌细胞死亡。ERG11基因突变是已知三唑类耐药的主要机制[7-8]。除了麦角甾醇生物合成发生改变外,有研究表明,药物外排转运体的过表达,如多药耐药基因1(multi-drug resistance gene 1, MDR1)和白色念珠菌药物抵抗基因1/2(candida albicans drug resistance gene 1/2, CDR1/CDR2),也与唑类耐药也相关[9-10]。本研究对本地区的热带念珠菌血流感染分离株进行分子流行病学的研究并初步探索唑类耐药机制。旨在为临床热带念珠菌血症的合理诊疗提供实验研究数据。

1. 资料与方法

1.1. 临床分离株收集

收集2018–2022年来自华西医院以及四川省其他8家医院(西南医科大学附属医院、川北医学院附属医院、广元市中心医院、泸州市人民医院、绵阳市中心医院、南充市中心医院、自贡市第一人民医院、攀枝花市中心医院)热带念珠菌临床分离株。本研究经四川大学华西医院生物医学伦理委员会审批,审批号为2023年审(1691)号。纳入标准:① 分离自患者的血液培养标本,剔除来自同一患者的分离株;② 临床信息(性别、年龄、科室、临床诊断等)完整;③ 菌种均经科马嘉显色培养基传代培养进行初步鉴定。所有分离株再通过质谱(Bruker Daltoniks, Bremen, Germany)准确鉴定。纳入所有的氟康唑非敏感株,通过随机抽样的方法选择入组的氟康唑敏感菌株,最终纳入39株来自血流感染的分离株。

1.2. 基质辅助激光解吸电离飞行时间质谱(MALDI-TOF MS )

为保证菌株鉴定的准确性,再次使用MALDI-TOF microflex® LRF质谱仪(Bruker Daltonik GmbH,德国)对所有收集到的菌株进行鉴定。

1.3. 微量肉汤稀释法测定抗真菌药物敏感性

使用Sensititre Yeast OneTM试剂盒(Trek Diagnostic Systems Ltd., East Grimstead, UK)对分离株进行菌株的最小抑菌浓度(minimal inhibitory concentration, MIC)检测。使用临床实验室标准研究所(Clinical and Laboratory Standards Institute, CLSI)推荐的MIC折点或流行病学界值(ECVs)来区分敏感菌株和耐药菌株。质控菌株为近平滑念珠菌ATCC 22019和克柔念珠菌ATCC 6258。

1.4. 基因组DNA提取

使用真菌基因组DNA抽提试剂盒(Sangon Biotech,上海,中国)提取分离株的基因组DNA,提取的DNA分装后,置于-20 ℃,待进行后续的实验。

1.5. 多位点序列分型

以基因组DNA为模板,使用SanTaq PCR Mix(Sangon Biotech,上海,中国)扩增6个管家基因:异柠檬酸裂解酶1(isocitrate lyase 1, ICL1)MDR1、丝氨酸蛋白酶同源物2(serine protease homologue 2, SAPT2)、丝氨酸蛋白酶同源物4(serine protease homologue 4, SAPT4)、木糖还原酶1(xylose reductase 1, XYR1)、葡萄糖-6-磷酸脱氢酶1a(glucose-6-phosphate dehydrogenase 1a, ZWF1a)。所用引物见附表1(网络资源附件)[11]。将PCR扩增产物进行一代测序(Sangon Biotech, Shanghai, China)。将6个管家基因的序列上传至PubMLST数据库,得到菌株的序列型别,使用MEGA7进行序列比对后,选择邻接法进行系统发育树构建。

1.6. 基因片段扩增及测序

以基因组DNA为模板,使用高保真PCR Mix(Sangon Biotech,上海,中国)扩增ERG11UPC2ERG3三个基因,所用引物见附表2(网络资源附件)[11-13]。并对PCR扩增产物进行一代测序(Sangon Biotech,上海,中国),使用SnapGene将测序结果与野生型序列进行比对。

1.7. RNA提取及相对表达量检测

使用酵母总RNA快速抽提试剂盒(Sangon Biotech,上海,中国)提取分离株的总RNA。使用Ⅱ M MLV RT Mix(Sangon Biotech,上海,中国)进行逆转录,使用SG Fast qPCR Master Mix(Sangon Biotech,上海,中国)对ERG11EGR3UPC2CDR1CDR2CDR3MRR1MDR1CYTb 9个基因进行实时荧光定量PCR,以ACT1作为内参基因,所用引物见附表3(网络资源附件)[14-17],采用Inline graphic法计算相对表达量。

1.8. 统计学方法

使用GraphPad Prism(9.5.1)对其进行相对基因表达量的统计分析,若数据呈现正态分布,采用t检验,否则采用Wilcoxon秩和检验。多组间的比较则采用One-way ANOVA,若有差异,则进一步采用SNK进行两两比较。P<0.05为差异有统计学意义。

2. 结果

2.1. 纳入菌株的基本特征

该研究共纳入39株来自血流感染的分离株,其中27株氟康唑耐药,1株氟康唑剂量依赖性敏感,11株氟康唑敏感。菌株主要来自ICU、急诊、血液等科室,年龄35~55岁,男性28例,女性11例。

2.2. 等位基因位点统计

由于有一株敏感株的测序结果与数据库数据中无法匹配,故未对此分离株进行MLST分型。对其余38株进行MLST分型。38株热带念珠菌临床分离株的6个管家基因测序结果见附表4(网络资源附件)。与数据库比对之后,发现其分型均为新的DST型,共31种。

2.3. 系统发育树的构建

通过PubMLST数据库筛选得到了17株全球血液标本来源的热带念珠菌分离株,具体信息见附表5(网络资源附件)。从该系统发育树(图1)中观察到,MIC值相近的菌株关系较近,敏感株和耐药株分别较为集中。本地区所纳入的大部分菌株与数据库的菌株亲缘关系较远,结合MLST结果提示本地区可能存在独特的遗传类型。从分离年份上观察,未见到菌株有明显的聚集。

图 1.

图 1

MLST phylogenetic tree of Candida tropicalis

热带念珠菌MLST系统发育树

Green indicates that the isolates are from the Sichuan region; blue indicates that the isolates are from other provinces in China; the strain numbers followed are the MIC values (mg/L) of fluconazole for each strain.

2.4. 基因突变检测

基因突变检测结果见表1所示。与野生型序列比对后,ERG11共存在3个有义突变,分别是Tyr257His(1株,3.70%)、Tyr132Phe(22株,81.48%)和Ser154Phe(21株,77.78%)。其中Tyr132Phe和Ser154Phe突变位点最常见,并且这两个突变位点通常同时出现在同一菌株中,相隔较近,且这两种突变耐药株的MIC均大于32 mg/L。在UPC2基因中发现了4个有义突变位点,分别是Ala251Thr(3株,11.11%)、Gln289Leu(2株,7.41%)、Ser279Glu(1株,3.70%)和Gln313His(1株,3.70%),UPC2突变耐药株的MIC值均也大于32 mg/L。ERG3基因中存在2个有义突变,分别是Ser112Gly(5株,18.52%)、Ala48Ser(1株,3.7%),MIC值均大于32 mg/L。ERG3基因 Ser112Gly突变在氟康唑敏感株中也有检出,其他突变均仅见于耐药株中。

表 1. Mutation results of ERG11, UPC2, and ERG3 fragments.

ERG11UPC2ERG3三个耐药相关基因突变检测结果

Nucleic acid
mutation position
Amino acid
mutation
position
Fluconazole susceptibility (n = 27)
Resistant
isolates/case (%)
MIC/
(mg/L)
ERG11
 T769C Tyr257His 1 (3.70) 32
 A395T Tyr132Phe 22 (81.48) 32-512
 C461T Ser154Phe 21 (77.78) 32-512
UPC2
 G751A Ala251Thr 3 (11.11) 32-256
 A866T Gln289eu 2 (7.41) 32-256
 C836T Ser279Glu 1 (3.70) 128
 G939C Gln313His 1 (3.70) 128
ERG3
 A334G Ser112Gly 5 (18.52) 32-256
 G142T Ala48Ser 1 (3.70) 64

2.5. 基因相对表达量分析

2.5.1. 氟康唑敏感组与氟康唑非敏感组之间比较

根据CLSI热带念珠菌氟康唑折点,将菌株分为敏感组(MIC≤2 mg/L, n=11)和非敏感组(MIC>2 mg/L, n=28),对ERG11UPC2MRR1MDR1ERG3CYTbCDR1CDR2CDR3共9个基因的相对表达量进行比较分析,结果见图2,两组ERG11(7.109 vs.14.48, P=0.03)、UPC2(0.832 vs. 1.922, P=0.04)和MRR1(1.347 vs. 0.903, P=0.007)表达差异有统计学意义(P<0.05)。两组的MDR1ERG3CYTbCDR1CDR2CDR3表达差异无统计学意义。

图 2.

图 2

Comparison of relative expression levels of genes between the sensitive and the non-sensitive groups

敏感组与非敏感组9个耐药相关基因相对表达量

FS: fluconazole-sensitive group, n = 11; FNS: non-fluconazole-sensitive group, n = 28. ns: P > 0.05; * P < 0.05; ** P < 0.01.

2.5.2. 不同MIC值热带念珠菌的耐药相关基因相对表达量水平

根据分离株氟康唑MIC结果,分为低MIC(MIC<8 mg/L, n=12)、中MIC(8≤MIC≤64 mg/L, n=6)、高MIC(MIC>64 mg/L, n=21)3组,结果如图3所示。3组比较中,MRR1MDR1CYTbCDR1CDR2CDR3中的相对表达量差异无统计学意义,ERG11P=0.007)、UPC2P=0.04)和ERG3P=0.0001)这3个基因的相对表达量差异有统计学意义。低MIC组与高MIC组之间ERG11UPC2表达量差异有统计学意义(P=0.005和P=0.01)。中MIC组的ERG3基因表达量高于低MIC组(P=0.0062)和高MIC(P<0.0001)组。

图 3.

图 3

Relative expression levels of 9 genes based on different MIC values

不同MIC值热带念珠菌的9个耐药相关基因相对表达量

L: MIC < 8 mg/L, n = 12; M: 8 ≤ MIC ≤ 64 mg/L, n = 6; H: MIC > 64 mg/L, n = 21. * P < 0.05; ** P < 0.01; **** P < 0.0001.

2.5.3. 不同ERG11突变类型热带念珠菌的耐药相关基因表达量水平

根据菌株是否存在A395T和C461T两个突变,将耐药菌株分为含突变组(n=22)和不含突变组(n=5),观察是否该突变会影响基因的相对表达量,结果见图4。两组ERG11UPC2MRR1MDR1CYTbCDR1CDR2CDR3表达差异均无统计学意义;含突变组ERG3基因表达量低于不含突变组,差异有统计学意义(1.492 vs.1.050, P=0.02)。

图 4.

图 4

Expression levels of 9 drug resistance-related genes in Candida tropical with different ERG11 mutation types

不同ERG11突变类型热带念珠菌的9个耐药相关基因表达量

R-WOM: resistant group without A395T or C461T, n = 5; R-WM: resistant group with A395T and C461T, n = 22. ns: P > 0.05; * P < 0.05.

3. 讨论

热带念珠菌血液感染后,没有典型特异性的临床症状,并且容易向深部组织扩散,培养分离时间长,治疗十分困难,病死率高。在2009–2018年,血源性热带念珠菌分离株氟康唑耐药率(27.2%)高于非血源性分离株(17.6%)[18]。在2021年,四川地区血流感染来源的热带念珠菌氟康唑的耐药率达到了55.5%[4]。热带念珠菌血流感染好发于糖皮质激素暴露、白血病、淋巴瘤等免疫功能低下患者人群[19]。在本研究中,氟康唑耐药的热带念珠菌菌株主要分离自ICU和血液科的血培养标本。

多位点序列分型是对一个微生物物种的数个管家基因测序,进行菌株分型,已迅速发展成为一种可靠的微生物感染流行病学研究技术[20-21]。本研究中, XYR1位点的等位基因数量最多,表明所纳入的热带念珠菌临床分离株的多态性主要来自该位点,ICL1位点的等位基因种类数量最少,最常见的是1型,表明我国西部地区热带念珠菌菌株的ICL1的位点较为保守。WU等[22]对来自北京市的58株热带念珠菌分离株进行MLST分型分析, ICL1最保守,最常见的型别也是1型,XYR1基因型较多,并且最具特异性。本研究对38株热带念珠菌进行MLST分型,得到31种新的DST型。经与PubMLST数据库比对发现,上传的中国菌株来自四川地区的较少,主要来自北京、上海等地,可能四川地区存在独特的遗传类型,还需要进一步分析。将本研究菌株与全球的菌株进行系统发育分析,结果发现本研究所纳入的菌株分布与MIC值相关,高水平耐药的菌株关系较近,与数据库来源菌株相距较远,可能由于本地区的菌株均为新的DST型,存在独特的遗传特征,还需更多热带念珠菌临床分离株数据的支持。

为了探索与三唑类药物靶点相关的基因是否发生突变,我们对麦角甾醇合成通路上的3个基因片段ERG11UPC2ERG3进行了PCR和一代测序。一代测序发现ERG11存在3个突变位点,分别是Ser154Phe、Tyr132Phe、Tyr257His。其中Ser154Phe、Tyr132Phe出现频率最高,并且总是同时出现。先前一项研究结果显示,氟康唑对同时含Ser154Phe、Tyr132Phe突变以及只含Tyr132Phe突变酿酒酵母的MIC值大于256 mg/L,对无突变的酿酒酵母为16 mg/L[23] 。因此,Tyr132Phe突变对氟康唑耐药有较显著的作用,提示该突变可能是三唑类药物耐药的潜在预测指标。FAN等[23]在S. cerevisiae W303-1a中表达来自热带念珠菌含Tyr257His突变的ERG11基因,菌株的MIC值是对照菌株的8倍。目前,对UPC2突变在热带念珠菌中的研究较少,发现的突变也不一致。本研究采用一代测序检测出耐药株的UPC2基因含有4个错义突变,分别是Ala251Thr、Qln289Leu、Ser279glu、Qln313His。有文献报道,Ala251Thr和Gln289Leu在敏感株中也有检出[24]。本研究在三唑类耐药的热带念珠菌ERG3基因中初次检测到两个错义突变,分别是Ala48Ser、Ser112Gly。

本研究发现ERG11UPC2在氟康唑耐药的热带念珠菌组的相对表达量高于氟康唑敏感组,与以往报道结果相同[25]。热带念珠菌另一个重要的三唑类耐药机制是主要促进因子MDR1和ATP结合盒转运蛋白基因CDR1的上调。本研究发现三唑类非敏感组和唑类敏感组的临床分离菌株在CDR1MDR1的表达水平上没有明显差异。MRR1作为MDR1的转录因子,在本研究耐药组中相对表达量有所下调。而在另一项研究中,PAUL等[26]将敏感菌株和经过10次传代、20次传代、30次传代的诱导耐药株的MRR1相对表达量进行比较,发现它们4组之间并没有显著的差异。既往研究报道,在氟康唑耐药株中,ERG3的相对表达量高于敏感株[25]。在本研究中,ERG3在耐药组和敏感组的相对表达量无明显差异,但在含Ser154Phe和Tyr132Phe突变组中,ERG3相对表达量低于未发生突变的菌株。ERG3是麦角甾醇合成通路后部分的编码基因,可能ERG11发生Ser154Phe和Tyr132Phe突变会影响ERG3的表达,但可能还需要更多数据支持这一现象。

本研究是首次对四川省血源性热带念珠菌进行分子流行病学研究。但是,本研究还存在以下不足:收集菌株的临床信息较少,故未能进行详细的临床相关特征性分析;由于菌株保存与转运过程的问题,部分菌株失活,导致本研究纳入菌株数量有限;本研究仅纳入血流感染来源的热带念珠菌临床分离株,未纳入其它标本来源的分离株,无法明确其它标本分离株的分子流行病学特征和耐药机制。

综上所述,MLST结果显示本研究所纳入的39株热带念珠菌临床分离株均为新的DST型,共31种,提示四川地区该类菌株可能存在独特的遗传关系,MIC相同或接近的菌株亲缘关系上相近,氟康唑高水平耐药的菌株较集中,遗传关系还需进一步分析。目前研究最多的ERG11存在3个突变位点Ser154Phe、Tyr132Phe、Tyr257His。ERG11UPC2相对表达量的上调与热带念珠菌氟康唑耐药相关。未来还需要更多更深入的研究探索四川地区热带念珠菌对氟康唑耐药菌株的分子分型与耐药机制,为临床治疗热带念珠菌感染提供理论支撑。

*    *    *

作者贡献声明 陈维琳负责论文构思、正式分析、调查研究和初稿写作、侯杰负责论文构思、数据审编、研究方法和初稿写作,彭亮负责调查研究,康梅负责审读与编辑写作,马莹负责经费获取、监督指导和审读与编辑写作。所有作者已经同意将文章提交给本刊,且对将要发表的版本进行最终定稿,并同意对工作的所有方面负责。

Author Contribution CHEN Weilin is responsible for conceptualization, formal analysis, investigation, and writing--original draft. HOU Jie is responsible for conceptualization, data curation, methodology, and writing--original draft. PENG Liang is responsible for investigation. KANG Mei is responsible for writing--review and editing. MA Yin is responsible for funding acquisition, supervision, and writing--review and editing. All authors have agreed to submit their articles to the Journal and to finalize the version to be published, and agree to take responsibility for all aspects of their work.

利益冲突 所有作者均声明不存在利益冲突

Declaration of Conflicting Interests All authors declare no competing interests.

Funding Statement

国家科技重大项目(No. 2020AAA0109405)资助

Contributor Information

维琳 陈 (Weilin CHEN), Email: wl1335058287@163.com.

莹 马 (Ying MA), Email: maying72@hotmail.com.

References

  • 1.De OLIVEIRA SANTOS G C, VASCONCELOS C C, LOPES A J O, et al. Candida infections and therapeutic strategies: mechanisms of action for traditional and alternative agents. Front Microbiol, 2018, 9: 1351. doi: 10.3389/fmicb.2018.01351.
  • 2.KOEHLER P, STECHER M, CORNELY O A, et al Morbidity and mortality of candidaemia in Europe: an epidemiologic meta-analysis. Clin Microbiol Infect. 2019;25(10):1200–1212. doi: 10.1016/j.cmi.2019.04.024. [DOI] [PubMed] [Google Scholar]
  • 3.OU H T, LEE T Y, CHEN Y C, et al. Pharmacoeconomic analysis of antifungal therapy for primary treatment of invasive candidiasis caused by Candida albicans and non-albicans Candida species. BMC Infect Dis, 2017, 17(1): 481. doi: 10.1186/s12879-017-2573-8.
  • 4.邓劲, 殷琳, 江海燕, 等 2019—2021年四川省血流感染病原真菌分布特征及药敏分析. 中国真菌学杂志. 2023;18(3):198–204. doi: 10.3969/j.issn.1673-3827.2023.03.002. [DOI] [Google Scholar]; DENG J, YIN L, JIANG H Y, et al Pathogenic distribution characteristics of fungal bloodstream infection in Sichuan Province from 2019 to 2021. Chin J Mycol. 2023;18(3):198–204. doi: 10.3969/j.issn.1673-3827.2023.03.002. [DOI] [Google Scholar]
  • 5.FAN X, XIAO M, LIAO K, et al. Notable increasing trend in azole non-susceptible Candida tropicalis causing invasive candidiasis in China (August 2009 to July 2014): molecular epidemiology and clinical azole consumption. Front Microbiol, 2017, 8:464. doi: 10.3389/fmicb.2017.00464.
  • 6.TSENG K Y, LIAO Y C, CHEN F C, et al. A predominant genotype of azole-resistant Candida tropicalis clinical strains. Lancet Microbe, 2022, 3(9): e646. doi: 10.1016/S2666-5247(22)00179-3.
  • 7.MACPHERSON S, AKACHE B, WEBER S, et al Candida albicans zinc cluster protein upc2p confers resistance to antifungal drugs and is an activator of ergosterol biosynthetic genes. Antimicrob Agents Chemother. 2005;49(5):1745–1752. doi: 10.1128/AAC.49.5.1745-1752.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.ARENDRUP M C, PATTERSON T F Multidrug-resistant Candida: epidemiology, molecular mechanisms, and treatment. J Infect Dis. 2017;216(suppl_3):S445–S451. doi: 10.1093/infdis/jix131. [DOI] [PubMed] [Google Scholar]
  • 9.WANG Q, CAI X, LI Y, et al. Molecular identification, antifungal susceptibility, and resistance mechanisms of pathogenic yeasts from the China antifungal resistance surveillance trial (CARST-fungi) study. Front Microbiol, 2022, 13: 1006375. doi: 10.3389/fmicb.2022.1006375.
  • 10.WHALEY S G, BERKOW E L, RYBAK J M, et al. Azole antifungal resistance in Candida albicans and emerging non-albicans Candida species. Front Microbiol, 2017, 7: 2173. doi: 10.3389/fmicb.2016.02173.
  • 11.KANAFANI Z A, PERFECT J R Antimicrobial resistance: resistance to antifungal agents: mechanisms and clinical impact. Clin Infect Dis. 2008;46(1):120–128. doi: 10.1086/524071. [DOI] [PubMed] [Google Scholar]
  • 12.KAUR G, CHAWLA S, KUMAR P, et al Advancing vaccine strategies against Candida infections: exploring new frontiers. Vaccines (Basel) 2023;11(11):1658. doi: 10.3390/vaccines11111658. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.EDDOUZI J, PARKER J E, VALE-SILVA L A, et al Molecular mechanisms of drug resistance in clinical Candida species isolated from Tunisian hospitals. Antimicrob Agents Chemother. 2013;57(7):3182–3193. doi: 10.1128/AAC.00555-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.HEALEY K R, ZHAO Y, PEREZ W B, et al Prevalent mutator genotype identified in funga l pathogen Candida glabrata promotes multi-drug resistance. Nat Commun. 2016;7:11128. doi: 10.1038/ncomms11128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.CASTANHEIRA M, DESHPANDE L M, MESSER S A, et al Analysis of global antifungal surv eillance results reveals predominance of Erg11 Y132F alteration among azole-resist ant Candida parapsilosis and Candida tropicalis and country-specific isolate dissem ination. Int J Antimicrob Agents. 2020;55(1):105799. doi: 10.1016/j.ijantimicag.2019.09.003. [DOI] [PubMed] [Google Scholar]
  • 16.LUNA-TAPIA A, WILLEMS H M E, PARKER J E, et al. Loss of Upc2p-inducible ERG3 transcription is sufficient to confer niche-specific azole resistance without compromising Candida albicans pathogenicity. mBio, 2018, 9(3): e00225-18. doi: 10.1128/mBio.00225-18.
  • 17.PAUL S, SINGH S, CHAKRABARTI A, et al Selection and evaluation of appropriate reference genes for RT-qPCR based expression analysis in Candida tropicalis following azole treatment. Sci Rep. 2020;10(6):1972. doi: 10.1038/s41598-020-58744-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.WANG Y, FAN X, WANG H, et al. Continual decline in azole susceptibility rates in Candida tropicalis over a 9-year period in China. Front Microbiol, 2021, 12: 702839. doi: 10.3389/fmicb.2021.702839.
  • 19.HOU J, DENG J, LIU Y, et al Epidemiology, clinical characteristics, risk factors, and outcomes of candidemia in a large tertiary teaching hospital in western China: a retrospective 5-year study from 2016 to 2020. Antibiotics (Basel) 2022;11(6):788. doi: 10.3390/antibiotics11060788. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.CHAN M S, MAIDEN M C, SPRATT B G. Database-driven multi locus sequence typing (MLST) of bacterial pathogens. Bioinformatics, 2001, 17(11): 1077-1083. doi: 10.1093/bioinformatics/17.11.1077.
  • 21.URWIN R, MAIDEN M C J Multi-locus sequence typing: a tool for global epidemiology. Trends in Microbiology. 2003;11(10):479–487. doi: 10.1016/j.tim.2003.08.006. [DOI] [PubMed] [Google Scholar]
  • 22.WU Y, ZHOU H, WANG J, et al. Analysis of the clonality of Candida tropicalis strains from a general hospital in Beijing using multilocus sequence typing. PLoS One, 2012, 7(11): e47767. doi: 10.1371/journal.pone.0047767.
  • 23.FAN X, XIAO M, ZHANG D, et al Molecular mechanisms of azole resistance in Candida tropicalis isolates causing invasive candidiasis in China. Clin Microbiol Infect. 2019;25(7):885–891. doi: 10.1016/j.cmi.2018.11.007. [DOI] [PubMed] [Google Scholar]
  • 24.ARASTEHFAR A, DANESHNIA F, HAFEZ A, et al Antifungal susceptibility, genotyping, resistance mechanism, and clinical profile of Candida tropicalis blood isolates. Med Mycol. 2020;58(6):766–773. doi: 10.1093/mmy/myz124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.JIANG C, NI Q, DONG D, et al The role of UPC2 gene in azole-resistant Candida tropicalis. Mycopathologia. 2016;181(11-12):833–838. doi: 10.1007/s11046-016-0050-3. [DOI] [PubMed] [Google Scholar]
  • 26.PAUL S, SINGH S, SHARMA D, et al Dynamics of in vitro development of azole resistance in Candida tropicalis. J Glob Antimicrob Resist. 2020;22:553–561. doi: 10.1016/j.jgar.2020.04.018. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Sichuan University (Medical Sciences) are provided here courtesy of Editorial Board of Journal of Sichuan University (Medical Sciences)

RESOURCES