Skip to main content
Journal of Anatomy logoLink to Journal of Anatomy
. 1973 Jul;115(Pt 2):203–219.

Ultrastructural and light microscope studies on rigor-extended sarcomeres in avian and porcine skeletal muscles.

P V Hegarty, K J Dahlin, E S Benson, C E Allen
PMCID: PMC1271508  PMID: 4756247

Full text

PDF
203

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ABBOTT B. C., BASKIN R. J. Volume changes in frog muscle during contraction. J Physiol. 1962 May;161:379–391. doi: 10.1113/jphysiol.1962.sp006893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BATE-SMITH E. C., BENDALL J. R. Changes in muscles after death. Br Med Bull. 1956 Sep;12(3):230–235. doi: 10.1093/oxfordjournals.bmb.a069557. [DOI] [PubMed] [Google Scholar]
  3. BENDALL J. R. The shortening of rabbit muscles during rigor mortis; its relation to the breakdown of adenosine triphosphate and creatine phosphate and to muscular contraction. J Physiol. 1951 Jun;114(1-2):71–88. doi: 10.1113/jphysiol.1951.sp004604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bahler A. S., Fales J. T. A flexible lever system for quantitative measurements of mammalian muscle dynamics. J Appl Physiol. 1966 Jul;21(4):1421–1426. doi: 10.1152/jappl.1966.21.4.1421. [DOI] [PubMed] [Google Scholar]
  5. HANSON J., HUXLEY H. E. Structural basis of the cross-striations in muscle. Nature. 1953 Sep 19;172(4377):530–532. doi: 10.1038/172530b0. [DOI] [PubMed] [Google Scholar]
  6. HILL A. V. The instantaneous elasticity of active muscle. Proc R Soc Lond B Biol Sci. 1953 Apr 17;141(903):161–178. doi: 10.1098/rspb.1953.0033. [DOI] [PubMed] [Google Scholar]
  7. HUXLEY A. F., NIEDERGERKE R. Structural changes in muscle during contraction; interference microscopy of living muscle fibres. Nature. 1954 May 22;173(4412):971–973. doi: 10.1038/173971a0. [DOI] [PubMed] [Google Scholar]
  8. HUXLEY H. E. Electron microscope studies of the organisation of the filaments in striated muscle. Biochim Biophys Acta. 1953 Nov;12(3):387–394. doi: 10.1016/0006-3002(53)90156-5. [DOI] [PubMed] [Google Scholar]
  9. HUXLEY H. E. The double array of filaments in cross-striated muscle. J Biophys Biochem Cytol. 1957 Sep 25;3(5):631–648. doi: 10.1083/jcb.3.5.631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. HUXLEY H., HANSON J. Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature. 1954 May 22;173(4412):973–976. doi: 10.1038/173973a0. [DOI] [PubMed] [Google Scholar]
  11. Hegarty P. V., Hooper A. C. Sarcomere length and fibre diameter distributions in four different mouse skeletal muscles. J Anat. 1971 Nov;110(Pt 2):249–257. [PMC free article] [PubMed] [Google Scholar]
  12. Hegarty P. V., Naudé R. T. The accuracy of measurement of individual skeletal muscle fibres separated by a rapid technique. Lab Pract. 1970 Feb;19(2):161–164. [PubMed] [Google Scholar]
  13. Henderson D. W., Goll D. E., Stromer M. H. A comparison of shortening and Z line degradation in post-mortem bovine, porcine, and rabbit muscle. Am J Anat. 1970 May;128(1):117–135. doi: 10.1002/aja.1001280109. [DOI] [PubMed] [Google Scholar]
  14. Huxley H. E., Brown W. The low-angle x-ray diagram of vertebrate striated muscle and its behaviour during contraction and rigor. J Mol Biol. 1967 Dec 14;30(2):383–434. doi: 10.1016/s0022-2836(67)80046-9. [DOI] [PubMed] [Google Scholar]
  15. Huxley H. E. Structural difference between resting and rigor muscle; evidence from intensity changes in the lowangle equatorial x-ray diagram. J Mol Biol. 1968 Nov 14;37(3):507–520. doi: 10.1016/0022-2836(68)90118-6. [DOI] [PubMed] [Google Scholar]
  16. LOCKER R. H. Striation patterns of ox muscle in rigor mortis. J Biophys Biochem Cytol. 1959 Dec;6:419–422. doi: 10.1083/jcb.6.3.419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. MARSH B. B. Observations on rigor mortis in whale muscle. Biochim Biophys Acta. 1952;9(2):127–132. doi: 10.1016/0006-3002(52)90137-6. [DOI] [PubMed] [Google Scholar]
  18. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Reedy M. K., Holmes K. C., Tregear R. T. Induced changes in orientation of the cross-bridges of glycerinated insect flight muscle. Nature. 1965 Sep 18;207(5003):1276–1280. doi: 10.1038/2071276a0. [DOI] [PubMed] [Google Scholar]
  20. Stromer M. H., Goll D. E., Roth L. E. Morphology of rigor--shortened bovine muscle and the effect of trypsin on pre- and postrigor myofibrils. J Cell Biol. 1967 Aug;34(2):431–445. doi: 10.1083/jcb.34.2.431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Tarrant P. J., Hegarty P. V., McLoughlin J. V. A study on the high energy phosphates and anaerobic glycolysis in the red and white fibres of porcine semitendinosus muscle. Proc R Ir Acad B. 1972;72(14):229–251. [PubMed] [Google Scholar]
  22. Ward P. C., Edwards C., Benson E. S. Relation between adenosinetriphosphate activity and sarcomere length in stretched glycerol-extracted frog skeletal muscle. Proc Natl Acad Sci U S A. 1965 Jun;53(6):1377–1384. doi: 10.1073/pnas.53.6.1377. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Anatomy are provided here courtesy of Anatomical Society of Great Britain and Ireland

RESOURCES