Skip to main content
Journal of Anatomy logoLink to Journal of Anatomy
. 1972 Nov;113(Pt 2):213–240.

Postnatal changes in the histochemical fibre types of procine skeletal muscle.

A S Davies
PMCID: PMC1271683  PMID: 4268592

Full text

PDF
213

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashmore C. R., Tompkins G., Doerr L. Postnatal development of muscle fiber types in domestic animals. J Anim Sci. 1972 Jan;34(1):37–41. doi: 10.2527/jas1972.34137x. [DOI] [PubMed] [Google Scholar]
  2. BULLER A. J., ECCLES J. C., ECCLES R. M. Differentiation of fast and slow muscles in the cat hind limb. J Physiol. 1960 Feb;150:399–416. doi: 10.1113/jphysiol.1960.sp006394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BULLER A. J., ECCLES J. C., ECCLES R. M. Interactions between motoneurones and muscles in respect of the characteristic speeds of their responses. J Physiol. 1960 Feb;150:417–439. doi: 10.1113/jphysiol.1960.sp006395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. BULLER A. J., LEWIS D. M. FURTHER OBSERVATIONS ON THE DIFFERENTIATION OF SKELETAL MUSCLES IN THE KITTEN HIND LIMB. J Physiol. 1965 Feb;176:355–370. doi: 10.1113/jphysiol.1965.sp007555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Barnard R. J., Edgerton V. R., Furukawa T., Peter J. B. Histochemical, biochemical, and contractile properties of red, white, and intermediate fibers. Am J Physiol. 1971 Feb;220(2):410–414. doi: 10.1152/ajplegacy.1971.220.2.410. [DOI] [PubMed] [Google Scholar]
  6. Beatty C. H., Basinger G. M., Bocek R. M. Differentiation of red and white fibers in muscle from fetal, neonatal and infant rhesus monkeys. J Histochem Cytochem. 1967 Feb;15(2):93–103. doi: 10.1177/15.2.93. [DOI] [PubMed] [Google Scholar]
  7. Bocek R. M., Basinger G. M., Beatty C. H. Glycogen synthetase, phosphorylase, and glycogen content of developing rhesus muscle. Pediatr Res. 1969 Nov;3(6):525–531. doi: 10.1203/00006450-196911000-00001. [DOI] [PubMed] [Google Scholar]
  8. Buller A. J., Mommaerts W. F., Seraydarian K. Enzymic properties of myosin in fast and slow twitch muscles of the cat following cross-innervation. J Physiol. 1969 Dec;205(3):581–597. doi: 10.1113/jphysiol.1969.sp008984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Buller A. J., Mommaerts W. F., Seraydarian K. Neural control of myofibrillar ATPase activity in rat skeletal muscle. Nat New Biol. 1971 Sep 1;233(35):31–32. doi: 10.1038/newbio233031a0. [DOI] [PubMed] [Google Scholar]
  10. Bárány M. ATPase activity of myosin correlated with speed of muscle shortening. J Gen Physiol. 1967 Jul;50(6 Suppl):197–218. doi: 10.1085/jgp.50.6.197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Bárány M., Close R. I. The transformation of myosin in cross-innervated rat muscles. J Physiol. 1971 Mar;213(2):455–474. doi: 10.1113/jphysiol.1971.sp009393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. CHIAKULAS J. J., PAULY J. E. A STUDY OF POSTNATAL GROWTH OF SKELETAL MUSCLE IN THE RAT. Anat Rec. 1965 May;152:55–61. doi: 10.1002/ar.1091520107. [DOI] [PubMed] [Google Scholar]
  13. CLOSE R. DYNAMIC PROPERTIES OF FAST AND SLOW SKELETAL MUSCLES OF THE RAT DURING DEVELOPMENT. J Physiol. 1964 Sep;173:74–95. doi: 10.1113/jphysiol.1964.sp007444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Cardinet G. H., 3rd, Wallace L. J., Fedde M. R., Guffy M. M., Bardens J. W. Developmental myopathy in the canine with type II muscle fiber hypotrophy. Arch Neurol. 1969 Dec;21(6):620–630. doi: 10.1001/archneur.1969.00480180076007. [DOI] [PubMed] [Google Scholar]
  15. Close R. Dynamic properties of fast and slow skeletal muscles of the rat after nerve cross-union. J Physiol. 1969 Oct;204(2):331–346. doi: 10.1113/jphysiol.1969.sp008916. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Cooper C. C., Cassens R. G., Kastenschmidt L. L., Briskey E. J. Histochemical characterization of muscle differentiation. Dev Biol. 1970 Oct;23(2):169–184. doi: 10.1016/0012-1606(70)90093-x. [DOI] [PubMed] [Google Scholar]
  17. Davies A. S., Gunn H. M. Histochemical fibre types in the mammalian diaphragm. J Anat. 1972 May;112(Pt 1):41–60. [PMC free article] [PubMed] [Google Scholar]
  18. Dorn A. Studien zur Skeletmuskeletwicklung beim Meerschweinchen. II. Topochemische Untersuchungen einiger Oxidoreduktasen. Acta Histochem. 1969;33(2):362–393. [PubMed] [Google Scholar]
  19. Dow J., Stracher A. Changes in the properties of myosin associated with muscle development. Biochemistry. 1971 Apr 13;10(8):1316–1321. doi: 10.1021/bi00784a007. [DOI] [PubMed] [Google Scholar]
  20. Dubowitz V. Cross-innervated mammalian skeletal muscle: histochemical, physiological and biochemical observations. J Physiol. 1967 Dec;193(3):481–496.3. doi: 10.1113/jphysiol.1967.sp008373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Dubowitz V. Enzyme histochemistry of skeletal muscle. J Neurol Neurosurg Psychiatry. 1965 Dec;28(6):516–524. doi: 10.1136/jnnp.28.6.516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. ENESCO M., PUDDY D. INCREASE IN THE NUMBER OF NUCLEI AND WEIGHT IN SKELETAL MUSCLE OF RATS OF VARIOUS AGES. Am J Anat. 1964 Mar;114:235–244. doi: 10.1002/aja.1001140204. [DOI] [PubMed] [Google Scholar]
  23. Edgerton V. R., Simpson D. R. The intermediate muscle fiber of rats and guinea pigs. J Histochem Cytochem. 1969 Dec;17(12):828–838. doi: 10.1177/17.12.828. [DOI] [PubMed] [Google Scholar]
  24. Engel W. K., Brooke M. H., Nelson P. G. Histochemical studies of denervated or tenotomized cat muscle: illustrating difficulties in relating experimental animal conditions to human neuromuscular diseases. Ann N Y Acad Sci. 1966 Sep 9;138(1):160–185. doi: 10.1111/j.1749-6632.1966.tb41164.x. [DOI] [PubMed] [Google Scholar]
  25. Goldspink G. Succinic dehydrogenase content of individual muscle fibers at different ages and stages of growth. Life Sci. 1969 Aug 15;8(16):791–808. doi: 10.1016/0024-3205(69)90097-6. [DOI] [PubMed] [Google Scholar]
  26. Guth L., Samaha F. J., Albers R. W. The neural regulation of some phenotypic differences between the fiber types of mammalian skeletal muscle. Exp Neurol. 1970 Jan;26(1):126–135. doi: 10.1016/0014-4886(70)90094-4. [DOI] [PubMed] [Google Scholar]
  27. Guth L., Samaha F. J. Erroneous interpretations which may result from application of the "myofibrillar ATPase" histochemical procedure to developing muscle. Exp Neurol. 1972 Mar;34(3):465–475. doi: 10.1016/0014-4886(72)90042-8. [DOI] [PubMed] [Google Scholar]
  28. Guth L., Samaha F. J. Qualitative differences between actomyosin ATPase of slow and fast mammalian muscle. Exp Neurol. 1969 Sep;25(1):138–152. doi: 10.1016/0014-4886(69)90077-6. [DOI] [PubMed] [Google Scholar]
  29. Guth L., Yellin H. The dynamic nature of the so-called "fiber types" of nammalian skeletal muscle. Exp Neurol. 1971 May;31(2):227–300. doi: 10.1016/0014-4886(71)90196-8. [DOI] [PubMed] [Google Scholar]
  30. Gutmann E., Hájek I. Differential reaction of muscle to excessive use in compensatory hypertrophy and increased phasic activity. Physiol Bohemoslov. 1971;20(3):205–212. [PubMed] [Google Scholar]
  31. Gutmann E., Schiaffino S., Hanzliková V. Mechanism of compensatory hypertrophy in skeletal muscle of the rat. Exp Neurol. 1971 Jun;31(3):451–464. doi: 10.1016/0014-4886(71)90248-2. [DOI] [PubMed] [Google Scholar]
  32. James N. T. A geometrical probability study of type I muscle fibres in the rabbit and guinea pig. J Neurol Sci. 1971 Dec;14(4):381–387. doi: 10.1016/0022-510x(71)90173-0. [DOI] [PubMed] [Google Scholar]
  33. James N. T. The distribution of muscle fibre types in fasciculi and their analysis. J Anat. 1971 Dec;110(Pt 3):335–342. [PMC free article] [PubMed] [Google Scholar]
  34. James N. T. The histochemical properties of muscle fibres and the formation of sub-fasciculi in the tibialis anterior muscle of the rabbit. J Neurol Sci. 1972 Apr;15(4):429–437. doi: 10.1016/0022-510x(72)90169-4. [DOI] [PubMed] [Google Scholar]
  35. Jennekens F. G., Tomlinson B. E., Walton J. N. Data on the distribution of fibre types in five human limb muscles. An autopsy study. J Neurol Sci. 1971 Nov;14(3):245–257. doi: 10.1016/0022-510x(71)90215-2. [DOI] [PubMed] [Google Scholar]
  36. Jennekens F. G., Tomlinson B. E., Walton J. N. The sizes of the two main histochemical fibre types in five limb muscles in man. An autopsy study. J Neurol Sci. 1971 Jul;13(3):281–292. doi: 10.1016/0022-510x(71)90033-5. [DOI] [PubMed] [Google Scholar]
  37. Karpati G., Engel W. K. Neuronal trophic function. A new aspect demonstrated histochemically in developing soleus muscle. Arch Neurol. 1967 Nov;17(5):542–545. doi: 10.1001/archneur.1967.00470290096012. [DOI] [PubMed] [Google Scholar]
  38. Karpati G., Engel W. K. Transformation of the histochemical profile of skeletal muscle by "foreign" innervation. Nature. 1967 Sep 30;215(5109):1509–1510. doi: 10.1038/2151509a0. [DOI] [PubMed] [Google Scholar]
  39. Kendrick-Jones J., Perry S. V. The enzymes of adenine nucleotide metabolism in developing skeletal muscle. Biochem J. 1967 Apr;103(1):207–214. doi: 10.1042/bj1030207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. LAWRIE R. A., GATHERUM D. P., HALE H. P. Abnormally low ultimate pH in pig muscle. Nature. 1958 Sep 20;182(4638):807–808. doi: 10.1038/182807a0. [DOI] [PubMed] [Google Scholar]
  41. Latzkovits L., Domonkos J. The effect of postnatal development on the carbohydrate metabolism of tonic and tetanic muscles. Acta Physiol Acad Sci Hung. 1965;28(3):253–257. [PubMed] [Google Scholar]
  42. Lesch M., Parmley W. W., Hamosh M., Kaufman S., Sonnenblick E. H. Effects of acute hypertrophy on the contractile properties of skeletal muscle. Am J Physiol. 1968 Apr;214(4):685–690. doi: 10.1152/ajplegacy.1968.214.4.685. [DOI] [PubMed] [Google Scholar]
  43. MONTGOMERY R. D. Growth of human striated muscle. Nature. 1962 Jul 14;195:194–195. doi: 10.1038/195194a0. [DOI] [PubMed] [Google Scholar]
  44. Meijer A. E. Improved histochemical method for the demonstration of the activity of a-glucan phosphorylase. II. Relation of molecular weight of glucosyl acceptor dextran to activation of phosphorylase. Histochemie. 1968;16(2):134–143. doi: 10.1007/BF00280609. [DOI] [PubMed] [Google Scholar]
  45. Meijer A. E. Improved histochemical method for the demonstration of the activity of alpha-glucan phosphorylase. I. The use of glucosyl acceptor dextran. Histochemie. 1968;12(3):244–252. doi: 10.1007/BF00306002. [DOI] [PubMed] [Google Scholar]
  46. Moody W. G., Cassens R. G. Histochemical differentiation of red and white muscle fibers. J Anim Sci. 1968 Jul;27(4):961–968. doi: 10.2527/jas1968.274961x. [DOI] [PubMed] [Google Scholar]
  47. Morita S., Cassens R. G., Briskey E. J. Localization of myoglobin in striated muscle of the domestic pig; benzidine and NADH2-TR reactions. Stain Technol. 1969 Nov;44(6):283–286. doi: 10.3109/10520296909063367. [DOI] [PubMed] [Google Scholar]
  48. NACHLAS M. M., TSOU K. C., DE SOUZA E., CHENG C. S., SELIGMAN A. M. Cytochemical demonstration of succinic dehydrogenase by the use of a new p-nitrophenyl substituted ditetrazole. J Histochem Cytochem. 1957 Jul;5(4):420–436. doi: 10.1177/5.4.420. [DOI] [PubMed] [Google Scholar]
  49. Nyström B. Histochemistry of developing cat muscles. Acta Neurol Scand. 1968;44(4):405–439. doi: 10.1111/j.1600-0404.1968.tb05584.x. [DOI] [PubMed] [Google Scholar]
  50. Olson C. B., Swett C. P., Jr Speed of contraction of skeletal muscle. The effect of hypoactivity and hyperactivity. Arch Neurol. 1969 Mar;20(3):263–270. doi: 10.1001/archneur.1969.00480090051008. [DOI] [PubMed] [Google Scholar]
  51. Ommer P. A. Histochemical differentiation of skeletal muscle fibres in the bovine foetus. Experientia. 1971 Feb 15;27(2):173–174. doi: 10.1007/BF02145879. [DOI] [PubMed] [Google Scholar]
  52. PADYKULA H. A., HERMAN E. The specificity of the histochemical method for adenosine triphosphatase. J Histochem Cytochem. 1955 May;3(3):170–195. doi: 10.1177/3.3.170. [DOI] [PubMed] [Google Scholar]
  53. ROMANUL F. C. CAPILLARY SUPPLY AND METABOLISM OF MUSCLE FIBERS. Arch Neurol. 1965 May;12:497–509. doi: 10.1001/archneur.1965.00460290053007. [DOI] [PubMed] [Google Scholar]
  54. Robbins N., Karpati G., Engel W. K. Histochemical and contractile properties in the cross-innervated guinea pig soleus muscle. Arch Neurol. 1969 Mar;20(3):318–329. doi: 10.1001/archneur.1969.00480090106015. [DOI] [PubMed] [Google Scholar]
  55. Sair R. A., Lister D., Moody W. G., Cassens R. G., Hoekstra W. G., Briskey E. J. Action of curare and magnesium on striated muscle of stress-susceptible pigs. Am J Physiol. 1970 Jan;218(1):108–114. doi: 10.1152/ajplegacy.1970.218.1.108. [DOI] [PubMed] [Google Scholar]
  56. Samaha F. J., Guth L., Albers R. W. The neural regulation of gene expression in the muscle cell. Exp Neurol. 1970 May;27(2):276–282. doi: 10.1016/0014-4886(70)90220-7. [DOI] [PubMed] [Google Scholar]
  57. TENNEY S. M., REMMERS J. E. Comparative quantitative morphology of the mammalian lung: diffusing area. Nature. 1963 Jan 5;197:54–56. doi: 10.1038/197054a0. [DOI] [PubMed] [Google Scholar]
  58. Todorov A., Petrov J. Entwicklung und Veränderung der Skelettmuskelfaser (Differenzierung, Hyperplasie und physiologische Degeneration) beim Schwein nach der Geburt. Anat Anz. 1969;125(1):88–108. [PubMed] [Google Scholar]
  59. VON BERTALANFFY L., ESTWICK R. R. Tissue respiration of musculature in relation to body size. Am J Physiol. 1953 Apr;173(1):58–60. doi: 10.1152/ajplegacy.1953.173.1.58. [DOI] [PubMed] [Google Scholar]
  60. VRBOVA G. Changes in the motor reflexes produced by tenotomy. J Physiol. 1963 Apr;166:241–250. doi: 10.1113/jphysiol.1963.sp007103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Van den Hende C., Muylle E., Oyaert W., De Roose P. The respiration of pig heart muscle and skeletal muscle in vitro. Zentralbl Veterinarmed A. 1971 Nov;18(9):709–716. doi: 10.1111/j.1439-0442.1971.tb00854.x. [DOI] [PubMed] [Google Scholar]
  62. WIRSEN C., LARSSON K. S. HISTOCHEMICAL DIFFERENTIATION OF SKELETAL MUSCLE IN FOETAL AND NEWBORN MICE. J Embryol Exp Morphol. 1964 Dec;12:759–767. [PubMed] [Google Scholar]
  63. van den Hende C., Muylle E., Oyaert W., de Roose P. Changes in muscle characteristics in growing pigs: histochemical and electron microscopic study. Zentralbl Veterinarmed A. 1972 Feb;19(2):102–110. doi: 10.1111/j.1439-0442.1972.tb00298.x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Anatomy are provided here courtesy of Anatomical Society of Great Britain and Ireland

RESOURCES