Abstract
As part of the Fly-CURE consortium, a mutant allele of Apoptosis inducing factor ( AIF ) was characterized using complementation mapping, genomic sequencing, and mosaic phenotypic analysis to investigate its role in cell growth control in Drosophila melanogaster . The AIF e04281 mutation dramatically reduced homozygous mutant clone size and caused morphological defects in genetically mosaic eyes. Sequencing confirmed a transposon insertion that truncates the AIF protein preceding conserved domains essential for mitochondrial function and apoptosis. The observed clone loss indicates a cell-autonomous requirement for AIF and supports the use of AIF e04281 as a loss-of-function background for genetic modifier screens on chromosome arm 2L.
Figure 1. Molecular and phenotypic characterization of the AIF e04281 mutation in Drosophila melanogaster .
(A) Deficiency mapping localized the AIF e04281 mutation to a ~163 kb interval on chromosome arm 2L (2L:1,989,057..2,152,458, area between blue vertical lines), defined by overlapping deficiencies that failed to complement the mutant allele (green). Flanking complementing deficiencies (magenta) and AIF (yellow) are indicated. Adapted from FlyBase’s JBrowse ( D. melanogaster r6.62) (Öztürk-Çolak et al. 2024). (B) ubi-RFP w⁺ , FRT40A (control) and AIF e04281 , FRT40A (mutant) Sanger sequencing chromatograms aligned to the AIF genomic region (2L:2,152,437..2,152,499) and translation, corresponding to amino acids (AA) 100-115 of exon 2 of isoform AIF-PB. Two independent AIF e04281 chromatograms are shown, each using a different sequencing primer on opposing sides of the insertion. AIF e04281 sequence 1, generated from a primer 5’ of the insertion, includes the 5' piggyBac inverted repeat, while AIF e04281 sequence 2, generated from a primer 3’ of the insertion, includes the 3' piggyBac inverted repeat (purple lines). The TTAA insertion sequence is indicated (orange box). Adapted from Benchling DNA alignment results (Benchling [Biology Software]). (C) Clustal Omega Multiple Sequence Alignment (MSA) of wildtype and mutant AIF protein sequences revealed the location of the insertion after amino acid 114 (blue box), which introduces a frameshift and truncates the AIF protein (magenta box) (Sievers et al. 2011). The resulting mutant protein lacks conserved FAD/NAD(P)H-binding (green) and AIF_C (yellow) domains. (D-G) Mitotic recombination was induced in the developing eye using the FLP-FRT system to generate genetically mosaic tissue and assess the AIF e04281 phenotype relative to controls. Eyes are oriented with anterior to the left and dorsal at the top. (D) Control eyes (genotype: w - , ey>FLP/Y; ubi-RFP w⁺ , FRT40A/FRT40A ) exhibited a higher proportion of red-pigmented tissue (white arrow; mean of 70.7% red to 29.3% white, n=40), indicating survival of homozygous ubi-RFP w⁺ clones. (E) Eyes from AIF e04281 mutants (genotype: w-, ey>FLP/Y; AIF e04281,w⁺ , FRT40A/FRT40A ) showed a marked reduction in red-pigmented mutant tissue (white arrow; mean of 14.7% red to 85.3% white, n=40), consistent with loss or underrepresentation of mutant clones. (F-G) A homozygous cell lethal allele ( l(2)cl-L3 1 ) was used to eliminate homozygous wildtype clones. (F) Representative control eye (genotype: w-, ey>FLP/Y; ubi-RFP w⁺ , FRT40A/l(2)cl-L3 1 , FRT40A ) exhibiting normal morphology. (G-G’) Representative AIF e04281 mutants in the l(2)cl-L3 1 background (genotype: w-, ey>FLP/Y; AIF e04281,w⁺ , FRT40A/l(2)cl-L3 1 , FRT40A ) displaying smaller, irregularly shaped eyes with visible tissue defects. (G) AIF e04281 eye exhibiting ommatidial disorganization and dorsal tissue loss (black arrow) in the absence of homozygous wildtype tissue. (G’) Small AIF e04281 eye displaying strong morphological defects, including tissue overgrowth and ectopic bristles in the interocular space (magenta asterisk) when homozygous wildtype tissue is eliminated.
Description
The Fly-CURE is a multi-institutional Course-Based Undergraduate Research Experience (CURE) that provides undergraduate students with hands-on experience mapping and characterizing novel mutants in Drosophila melanogaster (Merkle et al. 2023). The Fly-CURE aims to identify and study genes involved in cell growth regulation to better understand human disorders associated with abnormal cell proliferation (Neufeld and Hariharan 2002; Merkle et al. 2023; Chammout et al. 2024; Gruber et al. 2025; Patterson et al. 2025). In a previous forward genetic screen in Drosophila , mutant lines exhibiting defects in cell growth were identified in a background containing a mutation in Death-associated APAF1-related killer ( Dark ), a gene required for canonical apoptosis (Rodriguez et al. 1999; Mills et al. 2006; Kagey et al. 2012). When Dark is disrupted, cells defective in proper cell growth regulation evade apoptosis, allowing aberrant growth or proliferation phenotypes to be visualized in the developing Drosophila eye (Kagey et al. 2012). Following EMS mutagenesis in the Dark mutant background (allele Dark 82 ), mitotic recombination was induced on the right arm of chromosome 2 (2R) using the FLP-FRT system to identify mutant clones with aberrant growth phenotypes (Akdemir et al. 2006; Kagey et al. 2012; Weasner et al. 2017). Students in the Fly-CURE have characterized and mapped these mutants, resulting in 17 publications (Cosenza and Kagey 2016; Bieser et al. 2018; Bieser et al. 2019; Stamm et al. 2019; Siders et al. 2021; Talley et al. 2021; Vrailas-Mortimer et al. 2021; Evans et al. 2022; Mast et al. 2022; Moore et al. 2022; Cordes et al. 2023; Nowaskie et al. 2023; Chammout et al. 2024; Johnson et al. 2024; Thomson et al. 2024; Gruber et al. 2025; Patterson et al. 2025). To extend this approach to the left arm of chromosome 2 (2L), a mutant allele of Apoptosis inducing factor ( AIF ; allele AIF e04281 ) was selected as the starting point for a new forward genetic screen (Bellen et al. 2004; Thibault et al. 2004). Because future modifier screens will rely on the AIF e04281 background to uncover mutant lines that alter eye development and cell growth, thorough molecular and phenotypic characterization of the AIF e04281 allele is essential. This study establishes that foundation and provides a critical reference point for identifying genetic enhancers and suppressors of AIF -dependent phenotypes.
The AIF e04281 mutation provides a foundation for studying the genetic regulation of apoptosis and tissue growth. This homozygous lethal allele results from a piggyBac ( PBac ) transposon insertion that disrupts the AIF gene (Häcker et al. 2003; Bellen et al. 2004; Thibault et al. 2004), the predicted Drosophila ortholog of mouse AIF and human AIFM1 , a conserved mitochondrial flavoprotein critical for energy metabolism and induction of caspase-independent apoptosis (Susin et al. 1999; Joza et al. 2001; Joza et al. 2008; Joza et al. 2009). Studying AIF function in Drosophila can provide valuable insights into the cellular mechanisms underlying human disorders associated with AIFM1 mutations, including Cowchock syndrome and other mitochondrial dysfunction syndromes (Rinaldi et al. 2012; Bano and Prehn 2018; Heimer et al. 2018; Nguyen et al. 2025).
To validate the genomic location of the piggyBac insertion in AIF and to establish a baseline for mapping future alleles generated in the AIF e04281 mutant background, complementation testing was conducted. Virgin females heterozygous for AIF e04281 were crossed with heterozygous males from a collection of overlapping chromosomal deficiency lines spanning chromosome 2L (Ryder et al. 2007; Cook et al. 2012). Since the AIF mutation and deficiency chromosomes are homozygous lethal and maintained with balancer chromosomes containing a dominant phenotypic marker that causes curly wings in adults, failure to complement results were evidenced by the absence of straight-winged progeny. Since some 2L deficiency lines did not exhibit the expected curly-wing phenotype attributed to the balancer chromosome, the collection requires re-balancing before mutants from a forward genetic modifier screen can be mapped.
Initial mapping showed that Df(2L)BSC688 failed to complement AIF e04281 , while flanking lines Df(2L)Exel6005 and Df(2L)BSC37 complemented AIF e04281 , narrowing the mutation to nucleotides 1,737,249 to 2,175,620 on chromosome 2L (Table 1 and Figure 1A ). Additional deficiencies within this interval, including Df(2L)ED125 , Df(2L)ED7762 , and Df(2L)Exel6006 , also failed to complement AIF e04281 (Table 1 and Figure 1A ). The smallest non-complementing deficiency, Df(2L)Exel7008 (nucleotides 1,989,057 to 2,152,458), defined an interval containing part of the AIF gene (nucleotides 2,151,754 to 2,155,389), confirming the location of the mutation that causes homozygous lethality of the AIF e04281 allele (Table 1 and Figure 1A ). Complementation testing with an independent allele, AIF GE14994 , also failed to complement AIF e04281 , reinforcing that the lethal phenotype results from disruption of AIF and not a nearby locus (Table 1).
To validate the precise location of the piggyBac insertion associated with AIF e04281 , genomic DNA from heterozygous AIF e04281 mutant and ubi-RFP w⁺ control flies was extracted and subjected to PCR and Sanger sequencing. The insertion was reported to start at genomic position 2L:2,152,458 in exon 2 of mRNA transcripts AIF-RB and AIF-RC (Thibault et al. 2004; Öztürk-Çolak et al. 2024). Three primers were designed per student group: two to amplify the native genomic region flanking the insertion, and another targeting within the piggyBac insertion sequence and extending to the native AIF gene.
Gel electrophoresis results validated the general reported position of the insertion, and DNA sequencing from four independent sets of PCRs validated the position of the insertion at nucleotide 2,152,458 in AIF e04281 mutant DNA at the predicted PBac{RB} TTAA insertional target sequence ( Figure 1B, orange box) (Cary et al. 1989; Häcker et al. 2003; Thibault et al. 2004). The genomic sequence flanking this position aligned between the control and AIF e04281 sequence reads, while the remainder of the sequence aligned with piggyBac inverted repeats ( Figure 1B, purple lines). This insertion introduces a frameshift in exon 2 starting at amino acid 114, leading to a premature stop codon that truncates over 80% of the protein sequence ( Figure 1C ). The mutant AIF protein lacks conserved domains required for mitochondrial redox function and apoptosis, such as a mitochondrial Apoptosis-inducing factor C-terminal (AIF_C) dimerization domain and an FAD/NAD(P)H-binding (NirB) domain ( Figure 1C ) (Maté et al. 2002; Joza et al. 2008; Blum et al. 2025; Nguyen et al. 2025).
Mitotic recombination, mediated by the FLP-FRT genetic system, was used to assess the AIF e04281 phenotype in the adult Drosophila eye. In this system, flippase (FLP) drives mitotic recombination at flippase recognition target (FRT) sites near the centromere on chromosome 2L ( FRT40A ). Additionally, FLP activity is driven by enhancers of the eye-specific gene eyeless ( ey>FLP ) during development. Since the AIF e04281 piggyBac carries a mini - white cassette ( w +mC ), clones produced by mitotic recombination are genetically distinguished by differences in eye pigmentation: the insertion yields red pigment in AIF homozygous mutant and heterozygous clones, while homozygous wildtype cells lacking w⁺ appear white. In control mosaic eyes, the average eye composition was 70.7% red tissue (homozygous or heterozygous for ubi-RFP w⁺ ) and 29.3% white tissue ( Figure 1D, n=40). In AIF mosaic eyes, however, red AIF e04281 mutant tissue was significantly reduced (mean=14.7%), resulting in an overabundance of homozygous wildtype tissue (mean 85.3%) ( Figure 1E, n=40). These results indicate a strong growth disadvantage or loss of AIF mutant cells in AIF e04281 mosaic eyes, suggesting a requirement for AIF in autonomous cell survival.
To investigate the role of AIF in cell proliferation and tissue organization, a cell lethal allele ( l(2)cl-L3 1 ) was introduced on the non-mutant chromosome to eliminate homozygous wild-type clones. After mitotic recombination, adult eyes consisted of only homozygous mutant and heterozygous cells. In ubi-RFP w⁺ controls, adult eyes exhibited a normal morphology ( Figure 1F ). However, AIF e04281 mosaic eyes often appeared misshapen and reduced in size, with variability in the presence and severity of morphological defects ( Figure 1G, G’). These results indicate that the AIF e04281 mutation leads to loss or underproliferation of mutant cells, even in the absence of wild-type competition, and that AIF function is critical for eye development and tissue integrity. Morphological defects included misaligned ommatidia, irregular bristle placement, and uneven interocular spacing, further supporting AIF ’s developmental role ( Figure 1G, G’).
In eukaryotes, loss of AIF function impairs mitochondrial apoptosis and may activate compensatory nuclear apoptosis pathways (Joza et al. 2008; Joza et al. 2009; Bano and Prehn 2018; Nguyen et al. 2025). The reduced presence of AIF e04281 mutant clones, along with their morphological abnormalities, reflects a cell-autonomous requirement for AIF in maintaining tissue viability. Interestingly, AIF e04281 mutant eyes often retained size and shape when wildtype clones were present, suggesting a compensatory proliferative response by adjacent wildtype cells. This supports a non-cell-autonomous mechanism of tissue homeostasis during eye development, wherein surrounding cells respond to clone loss (Bergmann 2025).
Because the AIF gene shares homology with human AIFM1 , which regulates caspase-independent apoptosis, also called parthanatos, the Drosophila AIF e04281 allele provides a tractable model to study conserved mitochondrial and nuclear apoptotic pathways and their relevance to human disease (Susin et al. 1999; Fatokun et al. 2014). Disorders linked to AIFM1 mutations include Cowchock syndrome, X-linked deafness-5, spondylometaphyseal dysplasia, and early-onset sensorimotor neuropathies (Rinaldi et al. 2012; Bano and Prehn 2018; Heimer et al. 2018; Nguyen et al. 2025). These pathologies involve impaired mitochondrial function and cell death regulation, consistent with phenotypes observed in AIF e04281 mutant flies ( Figure 1D, G,G’) (Joza et al. 2008).
Altogether, the AIF e04281 allele constitutes a lethal loss-of-function mutation in Drosophila and reveals critical roles for AIF in apoptosis, tissue homeostasis, and eye development. Its effects on clone survival and tissue morphology make it a valuable background for genetic modifier screens on chromosome 2L. Identifying enhancers or suppressors of the AIF e04281 mutant phenotype may uncover new regulators of apoptosis and growth control pathways conserved across species. These findings reinforce Drosophila melanogaster as a powerful model for studying the molecular mechanisms of cell growth control and their disruption in human disease.
Table 1. Complementation analysis between AIF e04281 and chromosome 2L deficiency lines or an independent AIF allele. Complementation testing was performed between AIF e04281 and overlapping chromosomal deficiencies on 2L. Initial results narrowed the candidate region to 2L:1,737,249..2,175,620. Additional deficiency lines within this interval also failed to complement, defining the smallest non-complementing region as 2L:1,989,057..2,152,458. A known mutant allele of AIF also failed to complement AIF e04281 , confirming disruption of the AIF gene.
|
Bloomington Drosophila Stock Center (BDSC) 2L Deficiency Kit | |||
|
Deficiency |
BDSC Stock # |
Chromosomal Region |
Complementation Result |
|
Df(2L)BSC688 |
26540 |
2L:1,736,964..2,273,572 |
Fail to complement |
|
Df(2L)Exel6005 |
7492 |
2L:1,555,098..1,737,249 |
Complement |
|
Df(2L)BSC37 |
7144 |
2L:2,175,620..2,450,829 |
Complement |
|
Additional Deficiency Lines | |||
|
Deficiency |
BDSC Stock # |
Chromosomal Region |
Complementation Result |
|
Df(2L)Exel7008 |
7780 |
2L:1,989,057..2,152,458 |
Fail to complement |
|
Df(2L)Exel6006 |
8000 |
2L:1,911,627..2,175,599 |
Fail to complement |
|
Df(2L)ED7762 |
24119 |
2L:1,657,408..2,197,121 |
Fail to complement |
|
Df(2L)ED125 |
24120 |
2L:1,737,465..2,222,091 |
Fail to complement |
|
Single Gene Allele | |||
|
Genotype |
BDSC Stock # |
Gene Affected |
Complementation Result |
|
AIF GE14994 /CyO |
26887 |
AIF |
Fail to complement |
Reagents
w-; PBac{w +mC =RB}AIF e04281 , FRT40A/CyO (this study; generated from RRID:BDSC_18244)
Bloomington Drosophila Stock Center 2L Deficiency Kit (Cook et al. 2012)
w-, ey>Flp; FRT40A (RRID:BDSC_5615)
w-, ey>FLP; l(2)cl-L3 1 , FRT40A/CyO (RRID:BDSC_5622)
w-; P{w +mC =Ubi-mRFP.nls}2L, FRT40A/CyO (RRID:BDSC_34500)
w 1118 ; Df(2L)Exel7008/CyO (RRID:BDSC_7780)
w 1118 ; Df(2L)Exel6006, P{w +mC =XP-U}Exel6006/CyO (RRID:BDSC_8000)
w 1118 ; Df(2L)ED7762, P{w +mW.Scer\FRT.hs3 =3'.RS5+3.3'}ED7762/SM6a (RRID:BDSC_24119)
w 1118 ; Df(2L)ED125, P{w +mW.Scer\FRT.hs3 =3'.RS5+3.3'}ED125/SM6a (RRID:BDSC_24120)
w-; P{w +mC =EP}AIF GE14994 /CyO (RRID:BDSC_26887)
Forward primer 1 ( AIF ): 5’ GTC GAT TTC AGC TCC TCT TC 3’
Reverse primer 1 ( AIF ): 5’ TGT CCG ACT TTA ACA CAT CC 3’
Reverse primer 2 ( PBac ): 5’ GTA TCG CTC TGG ACG TCA TC 3’
Forward primer 2 ( PBac ): 5’ CCT CGA TAT ACA GAC CGA TAA AAC AC 3’
Reverse primer 3 ( AIF ): 5’ TAG TCG CTT TGC AGG AAT CCA 3’
Acknowledgments
Stocks obtained from the Bloomington Drosophila Stock Center (NIH P40OD018537) were used in this study. We thank Conrad De Jesus (University of Evansville) and Amy Jones and students at UT San Antonio for their contributions. This article was prepared while Joyce Stamm was employed at the University of Evansville. The opinions expressed in this article are the author's own and do not reflect the views of the National Institutes of Health, the Department of Health and Human Services, or the United States government.
References
- Akdemir F, Farkas R, Chen P, Juhasz G, Medved'ová L, Sass M, Wang L, Wang X, Chittaranjan S, Gorski SM, Rodriguez A, Abrams JM. Autophagy occurs upstream or parallel to the apoptosome during histolytic cell death. Development. 2006 Mar 15;133(8):1457–1465. doi: 10.1242/dev.02332. [DOI] [PubMed] [Google Scholar]
- Bano D, Prehn JHM. Apoptosis-Inducing Factor (AIF) in Physiology and Disease: The Tale of a Repented Natural Born Killer. EBioMedicine. 2018 Mar 23;30:29–37. doi: 10.1016/j.ebiom.2018.03.016. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bellen HJ, Levis RW, Liao G, He Y, Carlson JW, Tsang G, Evans-Holm M, Hiesinger PR, Schulze KL, Rubin GM, Hoskins RA, Spradling AC. The BDGP gene disruption project: single transposon insertions associated with 40% of Drosophila genes. Genetics. 2004 Jun 1;167(2):761–781. doi: 10.1534/genetics.104.026427. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Benchling [Biology Software]. 2025. Retrieved from https://benchling.com.
- Bergmann A. Cell Death, Compensatory Proliferation, and Cell Competition. Annu Rev Genet. 2025 Jul 17;59(1):165–187. doi: 10.1146/annurev-genet-012125-083359. [DOI] [PubMed] [Google Scholar]
- Bieser K, Stamm J, Aldo A, Bhaskara S, Clairborne M, Coronel Gómez J, Dean R, Dowell A, Dowell E, Eissa M, Fawaz A, Fouad-Meshriky M, Godoy D, Gonzalez K, Hachem M, Hammoud M, Huffman A, Ingram H, Jackman A, Karki B, Khalil N, Khalil H, Ha TK, Kharel A, Kobylarz I, Lomprey H, Lonnberg A, Mahbuba S, Massarani H, Minster M, Molina K, Molitor L, Murray T, Patel P, Pechulis S, Raja A, Rastegari G, Reeves S, Sabu N, Salazar R, Schulert D, Senopole M, Sportiello K, Torres C, Villalobos J, Wu J, Zeigler S, Kagey J. The mapping of Drosophila melanogaster mutant A.4.4. . MicroPubl Biol. 2018 Dec 17;2018 doi: 10.17912/micropub.biology.000069. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bieser K, Sanford J, Saville K, Arreola K, Ayres Z, Basulto D, Benito S, Breen C, Brix J, Brown N, Burton K, Chadwick T, Chen M, Chu K, Corbett B, Dill Z, Faughender M, Hickey A, Julia J, Kelty S, Jobs B, Krason B, Lam B, McCullough C, McEwen B, McKenzie J, McQuinn K, Moritz C, Myers K, Naugle E, Nutter A, O'Conke D, O'Grondik M, Patel K, Rudowski S, Sberna E, Stall G, Steiner T, Tanriverdi E, Torres Patarroyo N, Traster V, Tsai L, Valenti A, Villegas M, Voors S, Watson K, Wright M, Kagey J. Genetic mapping of shn E.3.2 in Drosophila melanogaster . . MicroPubl Biol. 2019 Jun 5;2019 doi: 10.17912/micropub.biology.000118. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blum M, Andreeva A, Florentino LC, Chuguransky SR, Grego T, Hobbs E, Pinto BL, Orr A, Paysan-Lafosse T, Ponamareva I, Salazar GA, Bordin N, Bork P, Bridge A, Colwell L, Gough J, Haft DH, Letunic I, Llinares-López F, Marchler-Bauer A, Meng-Papaxanthos L, Mi H, Natale DA, Orengo CA, Pandurangan AP, Piovesan D, Rivoire C, Sigrist CJA, Thanki N, Thibaud-Nissen F, Thomas PD, Tosatto SCE, Wu CH, Bateman A. InterPro: the protein sequence classification resource in 2025. Nucleic Acids Res. 2025 Jan 6;53(D1):D444–D456. doi: 10.1093/nar/gkae1082. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cary LC, Goebel M, Corsaro BG, Wang HG, Rosen E, Fraser MJ. Transposon mutagenesis of baculoviruses: analysis of Trichoplusia ni transposon IFP2 insertions within the FP-locus of nuclear polyhedrosis viruses. Virology. 1989 Sep 1;172(1):156–169. doi: 10.1016/0042-6822(89)90117-7. [DOI] [PubMed] [Google Scholar]
- Chammout H, Adkins DL, Al-Olimat AK, Alsaad Z, Altopp BM, Amer T, Apampa FO, Avery GR, Bazzi II, Beck ED, Beier EL, Belisle BS, Benton L, Bolyard MM, Brain OE, Buckner ET, Chowdhury SR, Cifranic JR, Cleary L, Clum TR, Cruz AM, DeGray MV, Echeverry IL, El Dana H, Elkadri SK, Estep PL, Falke LR, Foor HJ, Gullapalli AS, Hakim SS, Hazime HB, Heininger LE, Hoeft EG, James LM, Jeon Y, Johnson MR, Jordan LP, Khan Z, Kochensparger SK, Koria FJ, Krasnow RM, Lilly V, Lim E, MacCormack IT, Malesh A, Mariano MG, Mentzer AC, Messner KH, Myers KC, Newman ER, Richters AM, Romero L, Rotem A, Saho RJ, Sawaki K, Selders AN, Shockney E, Sobh FA, Speiser IF, Sproul BM, Sroufe VJ, Tollkuci A, Trevino CC, Vapenik MA, Wagner EM, Bieser KL, Siders JL, Thackeray JR, Kagey JD. G.3.2 is a novel allele of the gene connector enhancer of ksr ( cnk ) in Drosophila melanogaster. MicroPubl Biol. 2024 Sep 26;2024 doi: 10.17912/micropub.biology.001290. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cook RK, Christensen SJ, Deal JA, Coburn RA, Deal ME, Gresens JM, Kaufman TC, Cook KR. The generation of chromosomal deletions to provide extensive coverage and subdivision of the Drosophila melanogaster genome. Genome Biol. 2012;13(3):R21–R21. doi: 10.1186/gb-2012-13-3-r21. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cordes CN, Gouge MM, Morgan H, Porter C, Siders J, Bacab E, Barin B, Becerra IA, Castillo J, Church J, Condo-Hicks S, Conroy KJ, Curbelo-Navarro I, DePrest BJ, Eady A, Edmead T, Farouk V, Flores-Torres A, Girmai M, Gutierrez Navarro CI, Guzman S, Harris AB, Healy K, Jaafar A, Khadr A, Kiboi MN, Korte SN, Lopez C, Mahdi H, Mendoza Avalos J, Miranda K, Patel D, Lopez C, Mahdi H, Mendoza Avalos J, Miranda K, Patel D, Patel R, Pechulis S, Plachta V, Rhodes K, Sandoval AM, Thomas C, Valadez-Mendoza JA, Vora H, Yousif J, Bieser KL, Kagey JD. Genetic mapping of the p47 (L.3.2) mutation in Drosophilamelanogaster. MicroPubl Biol. 2023 Sep 18;2023 doi: 10.17912/micropub.biology.000783. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cosenza Ashley, D. Kagey Jacob. The Mapping and Characterization of <i>Cruella (Cru)</i>, a Novel Allele of <i>Capping Protein α (Cpa)</i>, Identified from a Conditional Screen for Negative Regulators of Cell Growth and Cell Division. Advances in Bioscience and Biotechnology. 2016;07(10):373–380. doi: 10.4236/abb.2016.710036. [DOI] [Google Scholar]
- Evans CJ, Bieser KL, Acevedo-Vasquez KS, Augustine EJ, Bowen S, Casarez VA, Feliciano VI, Glazier A, Guinan HR, Hallman R, Haugan E, Hehr LA, Hunnicutt SN, Leifer I, Mauger M, Mauger M, Melendez NY, Milshteyn L, Moore E, Nguyen SA, Phanphouvong SC, Pinal DM, Pope HM, Salinas MM, Shellin M, Small I, Yeoh NC, Yokomizo AMK, Kagey JD. The I.3.2 developmental mutant has a single nucleotide deletion in the gene centromere identifier. MicroPubl Biol. 2022 Oct 25;2022 doi: 10.17912/micropub.biology.000653. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fatokun AA, Dawson VL, Dawson TM. Parthanatos: mitochondrial-linked mechanisms and therapeutic opportunities. Br J Pharmacol. 2014 Apr 1;171(8):2000–2016. doi: 10.1111/bph.12416. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gruber L, Soto I, Correa T, Apodaca E, Arreola B, Cabral J, Chen K, Correo Galicia M, Gomez J, Hao E, Hernandez B, Holland DL, Jara-Pichardo C, Lonzame GM, Ortiz Olguin A, Romero R, Walker D, Amacher SG, Christie C, Coats LG, Gerhardt A, Holsted CA, Kraizel SR, Krumlaw A, Stevens A, Stover H, Sullivan CM, Wyse H, Hamill DR, Kagey JD, Bieser KL. The genetic mapping and phenotypic analysis of Patronin (F.1.1) in Drosophila melanogaster. MicroPubl Biol. 2025 Jun 9;2025 doi: 10.17912/micropub.biology.001564. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hacker U, Nystedt S, Barmchi MP, Horn C, Wimmer EA. piggyBac-based insertional mutagenesis in the presence of stably integrated P elements in Drosophila. Proc Natl Acad Sci U S A. 2003 Jun 11;100(13):7720–7725. doi: 10.1073/pnas.1230526100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heimer G, Eyal E, Zhu X, Ruzzo EK, Marek-Yagel D, Sagiv D, Anikster Y, Reznik-Wolf H, Pras E, Oz Levi D, Lancet D, Ben-Zeev B, Nissenkorn A. Mutations in AIFM1 cause an X-linked childhood cerebellar ataxia partially responsive to riboflavin. Eur J Paediatr Neurol. 2017 Sep 15;22(1):93–101. doi: 10.1016/j.ejpn.2017.09.004. [DOI] [PubMed] [Google Scholar]
- Johnson E, Kinney T, Luellen H, Amerud R, Anderson DR, Anderson M, Andres AM, Arshad R, Babin-Howard K, Barrigah DG, Beauregard A, Beise L, Christofferson N, David EL, DeWaard L, Diaz M, Donner L, Ehlinger N, Elmazi D, Engelhardt R, Farheen T, Figueroa MM, Flaten S, Frush M, Gonzalez E, Goolsby J, Guzman E, Hanson L, Hejl J, Heuschel J, Higgins B, Hoeppner B, Hollins D, Knutson J, Lemont R, Lopez M, Martin S, May T, McDade A, Men N, Meyer E, Mickle CR, Mireles S, Mize A, Neuhaus J, Ost A, Piane S, Pianovski M, Rangel A, Reyes J, Ruttenberg A, Sachs JD, Schluns B, Schroeder N, Skrobot PR, Smith C, Stout S, Valenzuela A, Vinavich KP, Weaver AK, Yager M, Zaragoza J, Zawadzki G, El Rahmany W, Scheuermann NL, Shah HP, Bieser KL, Croonquist P, Devergne O, Taylor EE, Wittke-Thompson JK, Kagey JD, Toering Peters S. Genetic Mapping of prod (E.3.3) , a New Lethal Allele of prod. MicroPubl Biol. 2024 Jul 29;2024 doi: 10.17912/micropub.biology.001236. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Joza N, Susin SA, Daugas E, Stanford WL, Cho SK, Li CY, Sasaki T, Elia AJ, Cheng HY, Ravagnan L, Ferri KF, Zamzami N, Wakeham A, Hakem R, Yoshida H, Kong YY, Mak TW, Zúñiga-Pflücker JC, Kroemer G, Penninger JM. Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature. 2001 Mar 29;410(6828):549–554. doi: 10.1038/35069004. [DOI] [PubMed] [Google Scholar]
- Joza N, Galindo K, Pospisilik JA, Benit P, Rangachari M, Kanitz EE, Nakashima Y, Neely GG, Rustin P, Abrams JM, Kroemer G, Penninger JM. The molecular archaeology of a mitochondrial death effector: AIF in Drosophila. Cell Death Differ. 2008 Feb 29;15(6):1009–1018. doi: 10.1038/cdd.2008.24. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Joza N, Pospisilik JA, Hangen E, Hanada T, Modjtahedi N, Penninger JM, Kroemer G. AIF: not just an apoptosis-inducing factor. Ann N Y Acad Sci. 2009 Aug 1;1171:2–11. doi: 10.1111/j.1749-6632.2009.04681.x. [DOI] [PubMed] [Google Scholar]
- Kagey JD, Brown JA, Moberg KH. Regulation of Yorkie activity in Drosophila imaginal discs by the Hedgehog receptor gene patched. Mech Dev. 2012 Jun 15;129(9-12):339–349. doi: 10.1016/j.mod.2012.05.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu D, Liu M, Wang W, Pang L, Wang Z, Yuan C, Liu K. Overexpression of apoptosis-inducing factor mitochondrion-associated 1 (AIFM1) induces apoptosis by promoting the transcription of caspase3 and DRAM in hepatoma cells. Biochem Biophys Res Commun. 2018 Mar 1;498(3):453–457. doi: 10.1016/j.bbrc.2018.02.203. [DOI] [PubMed] [Google Scholar]
- Mast E, Bieser KL, Abraham-Villa M, Adams V, Akinlehin AJ, Aquino LZ, Austin JL, Austin AK, Beckham CN, Bengson EJ, Bieszk A, Bogard BL, Brennan RC, Brnot RM, Cirone NJ, Clark MR, Cooper BN, Cruz D, Daprizio KA, DeBoe J, Dencker MM, Donnelly LL, Driscoll L, DuBeau RJ, Durso SW, Ejub A, Elgosbi W, Estrada M, Evins K, Fox PD, France JM, Franco Hernandez MG, Garcia LA, Garl O, Gorsuch MR, Gorzeman-Mohr MA, Grothouse ME, Gubbels ME, Hakemiamjad R, Harvey CV, Hoeppner MA, Ivanov JL, Johnson VM, Johnson JL, Johnson A, Johnston K, Keller KR, Kennedy BT, Killian LR, Klumb M, Koehn OL, Koym AS, Kress KJ, Landis RE, Lewis KN, Lim E, Lopez IK, Lowe D, Luengo Carretero P, Lunaburg G, Mallinder SL, Marshall NA, Mathew J, Mathew J, Mcmanaway HS, Meegan EN, Meyst JD, Miller MJ, Minogue CK, Mohr AA, Moran CI, Moran A, Morris MD, Morrison MD, Moses EA, Mullins CJ, Neri CI, Nichols JM, Nickels BR, Okai AM, Okonmah C, Paramo M, Paramo M, Parker SL, Parmar NK, Paschal J, Patel P, Patel D, Perkins EB, Perry MM, Perry Z, Pollock AA, Portalatin O, Proffitt KS, Queen JT, Quemeneur AC, Richardson AG, Rosenberger K, Rutherford AM, Santos-Perez IX, Sarti CY, Schouweiler LJ, Sessing LM, Setaro SO, Silvestri CF, Smith OA, Smith MJ, Sumner JC, Sutton RR, Sweckard L, Talbott NB, Traxler PA, Truesdell J, Valenti AF, Verace L, Vijayakumar P, Wadley WL, Walter KE, Williams AR, Wilson TJ, Witbeck MA, Wobler TM, Wright LJ, Zuczkowska KA, Devergne O, Hamill DR, Shah HP, Siders J, Taylor EE, Vrailas-Mortimer AD, Kagey JD. Genetic mapping of Uba3 O.2.2 , a pupal lethal mutation in Drosophila melanogaster . . MicroPubl Biol. 2022 Mar 18;2022 doi: 10.17912/micropub.biology.000542. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Merkle JA, Devergne O, Kelly SM, Croonquist PA, Evans CJ, Hwalek MA, Straub VL, Hamill DR, Peister A, Puthoff DP, Saville KJ, Siders JL, Villanueva Gonzalez ZJ, Wittke-Thompson JK, Bieser KL, Stamm J, Vrailas-Mortimer AD, Kagey JD. Fly-CURE, a multi-institutional CURE using Drosophila, increases students' confidence, sense of belonging, and persistence in research. J Microbiol Biol Educ. 2023 Sep 21;24(3) doi: 10.1128/jmbe.00245-22. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neufeld TP, Hariharan IK. Regulation of growth and cell proliferation during eye development. Results Probl Cell Differ. 2002;37:107–133. doi: 10.1007/978-3-540-45398-7_8. [DOI] [PubMed] [Google Scholar]
- Maté MJ, Ortiz-Lombardía M, Boitel B, Haouz A, Tello D, Susin SA, Penninger J, Kroemer G, Alzari PM. The crystal structure of the mouse apoptosis-inducing factor AIF. Nat Struct Biol. 2002 Jun 1;9(6):442–446. doi: 10.1038/nsb793. [DOI] [PubMed] [Google Scholar]
- Mills K, Daish T, Harvey KF, Pfleger CM, Hariharan IK, Kumar S. The Drosophila melanogaster Apaf-1 homologue ARK is required for most, but not all, programmed cell death. J Cell Biol. 2006 Mar 13;172(6):809–815. doi: 10.1083/jcb.200512126. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moore SL, Adamini FC, Coopes ES, Godoy D, Northington SJ, Stewart JM, Tillett RL, Bieser KL, Kagey JD. Patched and Costal-2 mutations lead to differences in tissue overgrowth autonomy. Fly (Austin) 2022 Dec 1;16(1):176–189. doi: 10.1080/19336934.2022.2062991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nguyen TNA, Lai HT, Fernandes R, Dall'Olio FG, Blériot C, Ha-Duong T, Brenner C. Apoptosis-inducing factor (AIF) at the crossroad of cell survival and cell death: implications for cancer and mitochondrial diseases. Cell Commun Signal. 2025 Jun 4;23(1):264–264. doi: 10.1186/s12964-025-02272-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nowaskie RR, Kitch A, Adams A, Anandaraj A, Apawan E, Bañuelos L, Betz CJ, Bogunia JM, Buechlein N, Burns MR, Collier HA, Collins Z, Combs K, Dakarian VD, Daniel A, De Jesus Iii CM, Erickson JD, Estrada B, Estrada K, Fields S, Gabriel M, Garcia RM, Gitamo S, Granath E, Hardin SN, Hattling E, Henriquez AV, Hernandez D, Johnson L, Kim AH, Kolley LK, Larue KM, Lockwood E, Longoria N, Lopez C, Lopez-Roca Fernandez RC, Lozano S, Manthie C, May T, Mehrzad Z, Mendoza I, Mohan S, Mounthachak C, Muyizere M, Myers MR, Newton J, Nwawueze A, Paredes AJ, Pezdek MN, Phat Nguyen H, Pobuda N, Sadat S, Sailor JJ, Santiago D, Sbarbaro M, Schultz Iii DE, Senobari AN, Shouse EM, Snarski SM, Solano E, Solis Campos N, Stewart E, Szczepaniak J, Tejeda M, Teoli DF, Tran M, Trivedi N, Uribe Aristizabal L, Vargas BZ, Walker Iii KW, Wasiqi J, Wong J, Zachrel A, Shah HP, Small E, Watts CT, Croonquist P, Devergne O, Jones AK, Taylor EE, Kagey JD, Merkle JA. clifford (B.4.1) , an allele of CG1603 , causes tissue overgrowth in the Drosophila melanogaster eye. MicroPubl Biol. 2023 Aug 22;2023 doi: 10.17912/micropub.biology.000936. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Öztürk-Çolak A, Marygold SJ, Antonazzo G, Attrill H, Goutte-Gattat D, Jenkins VK, Matthews BB, Millburn G, Dos Santos G, Tabone CJ, FlyBase Consortium FlyBase: updates to the Drosophila genes and genomes database. Genetics. 2024 Feb 1; doi: 10.1093/genetics/iyad211. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Patterson M, Andrus AR, Bell C, Bromell JJ, Buchanan D, Chammout DH, Charles WX, Cummings JE, Dabesh A, Deleon Garcia N, Dickerson KW, Emiko TR, Fathi S, Floyd TJ, Gragg H, Griffin SB, Heininger L, Ibrahim A, Ivey C, Jackson A, Jackson L, Jeeva D, Jones LE, Kana K, Kemp AS, Khan A, Kowal MR, Kowaleski SJ, Lago TC, Lynch E, Maalhagh Fard S, Makki K, Moaikel T, Mosby JM, Ricketts DA, Saho RJ, Sanchez F, Sauerbrey CH, Sprowl PC, Sullivan KM, Thomas M, Tripette JJ, Ugbaja C, Volcy GA, Watson J, Williams D, Bieser KL, Peister A, Siders J, Kagey JD. The M.3.2 mutation in Drosophila melanogaster mapped as a novel allele of tout-velu. MicroPubl Biol. 2025 Feb 11;2025 doi: 10.17912/micropub.biology.001489. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rinaldi C, Grunseich C, Sevrioukova IF, Schindler A, Horkayne-Szakaly I, Lamperti C, Landouré G, Kennerson ML, Burnett BG, Bönnemann C, Biesecker LG, Ghezzi D, Zeviani M, Fischbeck KH. Cowchock syndrome is associated with a mutation in apoptosis-inducing factor. Am J Hum Genet. 2012 Dec 7;91(6):1095–1102. doi: 10.1016/j.ajhg.2012.10.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rodriguez A, Oliver H, Zou H, Chen P, Wang X, Abrams JM. Dark is a Drosophila homologue of Apaf-1/CED-4 and functions in an evolutionarily conserved death pathway. Nat Cell Biol. 1999 Sep 1;1(5):272–279. doi: 10.1038/12984. [DOI] [PubMed] [Google Scholar]
- Ryder E, Ashburner M, Bautista-Llacer R, Drummond J, Webster J, Johnson G, Morley T, Chan YS, Blows F, Coulson D, Reuter G, Baisch H, Apelt C, Kauk A, Rudolph T, Kube M, Klimm M, Nickel C, Szidonya J, Maróy P, Pal M, Rasmuson-Lestander A, Ekström K, Stocker H, Hugentobler C, Hafen E, Gubb D, Pflugfelder G, Dorner C, Mechler B, Schenkel H, Marhold J, Serras F, Corominas M, Punset A, Roote J, Russell S. The DrosDel deletion collection: a Drosophila genomewide chromosomal deficiency resource. Genetics. 2007 Aug 24;177(1):615–629. doi: 10.1534/genetics.107.076216. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Siders JL, Bieser KL, Hamill DR, Acosta EC, Alexander OK, Ali HI, Anderson MJ, Arrasmith HR, Azam M, Beeman NJ, Beydoun H, Bishop LJ, Blair MD, Bletch B, Bline HR, Brown JC, Burns KM, Calagua KC, Chafin L, Christy WA, Ciamacco C, Cizauskas H, Colwell CM, Courtright AR, Diaz Alavez L, Ecret RI, Edriss F, Ellerbrock TG, Ellis MM, Extine EM, Feldman E, Fickenworth LJ, Goeller CM, Grogg AS, Hernandez Y, Hershner A, Jauss MM, Jimenez Garcia L, Franks KE, Kazubski ET, Landis ER, Langub J, Lassek TN, Le TC, Lee JM, Levine DP, Lightfoot PJ, Love N, Maalhagh-Fard A, Maguire C, McGinnis BE, Mehta BV, Melendrez V, Mena ZE, Mendell S, Montiel-Garcia P, Murry AS, Newland RA, Nobles RM, Patel N, Patil Y, Pfister CL, Ramage V, Ray MR, Rodrigues J, Rodriquez VC, Romero Y, Scott AM, Shaba N, Sieg S, Silva K, Singh S, Spargo AJ, Spitnale SJ, Sweeden N, Tague L, Tavernini BM, Tran K, Tungol L, Vestal KA, Wetherbee A, Wright KM, Yeager AT, Zahid R, Kagey JD. Genetic Mapping of a new Hippo allele, Hpo(N.1.2), in Drosophila melanogaster. MicroPubl Biol. 2021 Apr 8;2021 doi: 10.17912/micropub.biology.000383. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, Thompson JD, Higgins DG. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 2011 Oct 11;7:539–539. doi: 10.1038/msb.2011.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stamm J, Joshi G, Anderson MA, Bussing K, Houchin C, Elinsky A, Flyte J, Husseini N, Jarosz D, Johnson C, Johnson A, Jones C, Kooner T, Myhre D, Rafaill T, Sayed S, Swan K, Toma J, Kagey J. Genetic mapping of EgfrL.3.1 in Drosophila melanogaster. MicroPubl Biol. 2019 Apr 26;2019 doi: 10.17912/micropub.biology.000098. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, Mangion J, Jacotot E, Costantini P, Loeffler M, Larochette N, Goodlett DR, Aebersold R, Siderovski DP, Penninger JM, Kroemer G. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature. 1999 Feb 4;397(6718):441–446. doi: 10.1038/17135. [DOI] [PubMed] [Google Scholar]
- Talley EM, Watts CT, Aboyer S, Adamson MG, Akoto HA, Altemus H, Avella PJ, Bailey R, Bell ER, Bell KL, Breneman K, Burkhart JS, Chanley LJ, Cook SS, DesLaurier MT, Dorsey TR, Doyle CJ, Egloff ME, Fasawe AS, Garcia KK, Graves NP, Gray TK, Gustafson EM, Hall MJ, Hayes JD, Holic LJ, Jarvis BA, Klos PS, Kritzmire S, Kuzovko L, Lainez E, McCoy S, Mierendorf JC, Neri NA, Neville CR, Osborn K, Parker K, Parks ME, Peck K, Pitt R, Platta ME, Powell B, Rodriguez K, Ruiz C, Schaefer MN, Shields AB, Smiley JB, Stauffer B, Straub D, Sweeney JL, Termine KM, Thomas B, Toth SD, Veile TR, Walker KS, Webster PN, Woodard BJ, Yoder QL, Young MK, Zeedyk ML, Ziegler LN, Bieser KL, Puthoff DP, Stamm J, Vrailas-Mortimer AD, Kagey JD, Merkle JA. Genetic mapping and phenotypic analysis of shot H.3.2 in Drosophila melanogaster . . MicroPubl Biol. 2021 Jul 13;2021 doi: 10.17912/micropub.biology.000418. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thibault ST, Singer MA, Miyazaki WY, Milash B, Dompe NA, Singh CM, Buchholz R, Demsky M, Fawcett R, Francis-Lang HL, Ryner L, Cheung LM, Chong A, Erickson C, Fisher WW, Greer K, Hartouni SR, Howie E, Jakkula L, Joo D, Killpack K, Laufer A, Mazzotta J, Smith RD, Stevens LM, Stuber C, Tan LR, Ventura R, Woo A, Zakrajsek I, Zhao L, Chen F, Swimmer C, Kopczynski C, Duyk G, Winberg ML, Margolis J. A complementary transposon tool kit for Drosophila melanogaster using P and piggyBac. Nat Genet. 2004 Feb 22;36(3):283–287. doi: 10.1038/ng1314. [DOI] [PubMed] [Google Scholar]
- Thomson L, Shah HP, Akinwotu Adewale V, Beise A, Bliayang C, Cioch Z, Craig M, Crump A, Durdan M, Espinosa M, Feda K, Feist J, Fragoso A, Haro G, Hoffman B, Horne P, Houha N, Hounnou S, Inman A, Jakobsze D, Juarez-Morales Y, Khan Y, Kohler J, Lawlor R, Lieser B, Loitz R, Martinez E, Martinez A, Martinez M, Maza B, Mendoza B, Miller S, Mngodo H, O'Shea S, Piane SN, Raivala E, Ruger S, Singer A, Strand JE, Traylor A, Wright A, McCabe S, Pandit SS, Bieser K, Croonquist P, Taylor EE, Wittke-Thompson J, Kagey JD, Devergne O. Genetic Mapping and Phenotypic Analysis of GstE14 (E.4.1) on Eye and Antennae Development in Drosophila melanogaster. MicroPubl Biol. 2024 Apr 13;2024 doi: 10.17912/micropub.biology.001019. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vrailas-Mortimer AD, Aggarwal N, Ahmed NN, Alberts IM, Alhawasli M, Aljerdi IA, Allen BM, Alnajar AM, Anderson MA, Armstong R, Avery CC, Avila EJ, Baker TN, Basardeh S, Bates NA, Beidas FN, Bosler AC, Brewer DM, Buenaventura RS, Burrell NJ, Cabrera-Lopez AP, Cervantes-Gonzalez AB, Cezar RP, Coronel J, Croslyn C, Damery KR, Diaz-Alavez L, Dixit NP, Duarte DL, Emke AR, English K, Eshun AA, Esterly SR, Estrada AJ, Feng M, Freund MM, Garcia N, Ghotra CS, Ghyasi H, Hale CS, Hulsman L, Jamerson L, Jones AK, Kuczynski M, Lacey-Kennedy TN, Lee MJ, Mahjoub T, Mersinger MC, Muckerheide AD, Myers DW, Nielsen K, Nosowicz PJ, Nunez JA, Ortiz AC, Patel TT, Perry NN, Poser WSA, Puga DM, Quam C, Quintana-Lopez P, Rennerfeldt P, Reyes NM, Rines IG, Roberts C, Robinson DB, Rossa KM, Ruhlmann GJ, Schmidt J, Sherwood JR, Shonoda DH, Soellner H, Torrez JC, Velide M, Weinzapfel Z, Ward AC, Bieser KL, Merkle JA, Stamm JC, Tillett RL, Kagey JD. B.2.16 is a non-lethal modifier of the Dark 82 mosaic eye phenotype in Drosophila melanogaster . . MicroPubl Biol. 2021 Jan 18;2021 doi: 10.17912/micropub.biology.000359. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weasner BM, Zhu J, Kumar JP. FLPing Genes On and Off in Drosophila. Methods Mol Biol. 2017;1642:195–209. doi: 10.1007/978-1-4939-7169-5_13. [DOI] [PMC free article] [PubMed] [Google Scholar]

