Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1981 Jan;310:273–283. doi: 10.1113/jphysiol.1981.sp013548

An energy-dependent, sodium-independent component of active p-aminohippurate transport in rabbit renal cortex.

J Maxild, J V Møller, M I Sheikh
PMCID: PMC1274739  PMID: 7230036

Abstract

1. The relation between the coupling of metabolic energy to renal p-aminohippurate (PAH) accumulation and Na+-K+ transport was studied in rabbit cortical slices. 2. Cyanide (CN-), 2,4-dinitrophenol (DNP) and fluoride (F-( at low-medium concentrations, giving rise to a slight decline of tissue ATP concentration, caused a reduction o PAH accumulation without significantly affecting intracellular Na+ and K+ concentrations. However, higher levels of the metabolic inhibitors also resulted in considerable inhibition of active Na+-K+ transport. 3. The rate of carrier-mediated PAH uptake was slow under anaerobic conditions, relative to that measured under aerobic conditions in Na+-depleted slices. In the latter case the maximal accumulation achieved was only 1.55 +/- 0.16. 4. The uptake rate of PAH under anaerobic conditions was not inhibited by the absence of Na+ or addition of metabolic inhibitors in the concentrations used under aerobic conditions. 5. It is concluded that although Na+ is required for the attainment of high accumulation ratios of PAH, oxidative metabolism stimulates PAH flux by a Na+-independent mechanism.

Full text

PDF
273

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berndt W. O., Grote D. The accumulation of C14-dinitrophenol by slices of rabbit kidney cortex. J Pharmacol Exp Ther. 1968 Nov;164(1):223–231. [PubMed] [Google Scholar]
  2. COPENHAVER J. H., Jr, FORSTER R. P. Intracellular accumulation as an active process in a mammalian renal transport system in vitro; energy dependence and competitive phenomena. Am J Physiol. 1956 Jul;186(1):167–171. doi: 10.1152/ajplegacy.1956.186.1.167. [DOI] [PubMed] [Google Scholar]
  3. CROSS R. J., TAGGART J. V. Renal tubular transport: accumulation of p-aminohippurate by rabbit kidney slices. Am J Physiol. 1950 Apr 1;161(1):181–190. doi: 10.1152/ajplegacy.1950.161.1.181. [DOI] [PubMed] [Google Scholar]
  4. Chung S. T., Park Y. S., Hong S. K. Effect of cations on transport of weak organic acids in rabbit kidney slices. Am J Physiol. 1970 Jul;219(1):30–33. doi: 10.1152/ajplegacy.1970.219.1.30. [DOI] [PubMed] [Google Scholar]
  5. FOULKES E. C., MILLER B. F. Steps in p-aminohippurate transport by kidney slices. Am J Physiol. 1959 Jan;196(1):86–92. doi: 10.1152/ajplegacy.1958.196.1.86. [DOI] [PubMed] [Google Scholar]
  6. Gerencser G. A., Hong S. K. Roles of sodium and potassium ions on p-aminohippurate transport in rabbit kidney slices. Biochim Biophys Acta. 1975 Sep 16;406(1):108–119. doi: 10.1016/0005-2736(75)90046-2. [DOI] [PubMed] [Google Scholar]
  7. Gerencser G. A., Park Y. S., Hong S. K., Solomon S. Sodium influence upon the transport kinetics of p-aminohippurate in rabbit kidney slices. Proc Soc Exp Biol Med. 1973 Nov;144(2):440–444. doi: 10.3181/00379727-144-37608. [DOI] [PubMed] [Google Scholar]
  8. Kikuta Y., Hoshi T. Role of sodium ions in p-aminohippurate transport by newt kidney. Biochim Biophys Acta. 1979 Jun 2;553(3):404–416. doi: 10.1016/0005-2736(79)90296-7. [DOI] [PubMed] [Google Scholar]
  9. MUDGE G. H. Electrolyte metabolism of rabbit-kidney slices; studies with radioactive potassium and sodium. Am J Physiol. 1953 Jun;173(3):511–522. doi: 10.1152/ajplegacy.1953.173.3.511. [DOI] [PubMed] [Google Scholar]
  10. Maxild J. Effect of externally added ATP and related compounds on active transport of p-aminohippurate and metabolism in cortical slices of the rabbit kidney. Arch Int Physiol Biochim. 1978 Aug;86(3):509–530. doi: 10.3109/13813457809055920. [DOI] [PubMed] [Google Scholar]
  11. Maxild J. Energy requirements for active transport of p-aminohippurate in renal cortical slices. Arch Int Physiol Biochim. 1973 Sep;81(3):501–521. doi: 10.3109/13813457309073400. [DOI] [PubMed] [Google Scholar]
  12. Maxild J., Moller J. V. Metabolic studies on renal transport of p-aminohippurate in vitro. Biochim Biophys Acta. 1969 Sep 2;184(3):614–624. doi: 10.1016/0304-4165(69)90276-1. [DOI] [PubMed] [Google Scholar]
  13. Podevin R. A., Boumendil-Podevin E. F. Monovalent cation and ouabain effects on PAH uptake by rabbit kidney slices. Am J Physiol. 1977 Mar;232(3):F239–F247. doi: 10.1152/ajprenal.1977.232.3.F239. [DOI] [PubMed] [Google Scholar]
  14. Podevin R. A., Boumendil-Podevin E. F., Priol C. Concentrative PAH transport by rabbit kidney slices in the absence of metabolic energy. Am J Physiol. 1978 Oct;235(4):F278–F285. doi: 10.1152/ajprenal.1978.235.4.F278. [DOI] [PubMed] [Google Scholar]
  15. SHIDEMAN F. E., RENE R. M., STONEMAN F., REYNOLDS G. Succinate oxidation and Krebs cycle as an energy source for renal tubular transport mechanisms. Am J Physiol. 1951 Jul;166(1):104–112. doi: 10.1152/ajplegacy.1951.166.1.104. [DOI] [PubMed] [Google Scholar]
  16. Sheikh M. I., Moller J. V. The kinetic parameters of renal transport of p-aminohippurate in vitro. Biochim Biophys Acta. 1970;196(2):305–319. doi: 10.1016/0005-2736(70)90018-0. [DOI] [PubMed] [Google Scholar]
  17. Sheikh M. I., Stahl M. Characteristics of accumulation of probenecid by rabbit kidney cortical slices. Am J Physiol. 1977 Jun;232(6):F513–F523. doi: 10.1152/ajprenal.1977.232.6.F513. [DOI] [PubMed] [Google Scholar]
  18. Smith H. W., Finkelstein N., Aliminosa L., Crawford B., Graber M. THE RENAL CLEARANCES OF SUBSTITUTED HIPPURIC ACID DERIVATIVES AND OTHER AROMATIC ACIDS IN DOG AND MAN. J Clin Invest. 1945 May;24(3):388–404. doi: 10.1172/JCI101618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Spencer A. M., Sack J., Hong S. K. Relationship between PAH transport and Na-K-ATPase activity in the rabbit kidney. Am J Physiol. 1979 Feb;236(2):F126–F130. doi: 10.1152/ajprenal.1979.236.2.F126. [DOI] [PubMed] [Google Scholar]
  20. Tune B. M., Burg M. B., Patlak C. S. Characteristics of p-aminohippurate transport in proximal renal tubules. Am J Physiol. 1969 Oct;217(4):1057–1063. doi: 10.1152/ajplegacy.1969.217.4.1057. [DOI] [PubMed] [Google Scholar]
  21. WHITTAM R. Sodium and potassium movements in kidney cortex slices from new-born animals. J Physiol. 1960 Sep;153:358–369. doi: 10.1113/jphysiol.1960.sp006539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. WHITTAM R., WILLIS J. S. ION MOVEMENTS AND OXYGEN CONSUMPTION IN KIDNEY CORTEX SLICES. J Physiol. 1963 Aug;168:158–177. doi: 10.1113/jphysiol.1963.sp007184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Weiner I. M., Roth L., Skulan T. W. Effects of dinitrophenol and cyanide on TPAH and Na reabsorption. Am J Physiol. 1971 Jul;221(1):86–91. doi: 10.1152/ajplegacy.1971.221.1.86. [DOI] [PubMed] [Google Scholar]
  24. Woodhall P. B., Tisher C. C., Simonton C. A., Robinson R. R. Relationship between para-aminohippurate secretion and cellular morphology in rabbit proximal tubules. J Clin Invest. 1978 May;61(5):1320–1329. doi: 10.1172/JCI109049. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES