Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1994 May;66(5):1441–1449. doi: 10.1016/S0006-3495(94)80934-8

Molecular response of the lipid headgroup to bilayer hydration monitored by 2H-NMR.

A S Ulrich 1, A Watts 1
PMCID: PMC1275864  PMID: 8061193

Abstract

The effect of hydration on the conformation and dynamics of the phosphatidylcholine headgroup has been investigated by 2H-NMR measurements of liquid crystalline dioleoylphosphatidylcholine in multilamellar liposomes. Deuterium quadrupole splittings (delta nu Q) and spin-lattice relaxation rates (1/T1) were recorded for three selectively labeled headgroup segments (alpha, beta, and gamma) over the range of water/lipid mole ratios from 4 to 100. The smooth changes in delta nu Q and 1/T1 are found to essentially parallel each other and can be described by a single exponential decay function. Progressive hydration thus induces a concerted change in headgroup conformation together with an increase in its rate of motion (detected by delta nu Q and 1/T1, respectively). The enhanced mobility is partially due to a shift in the lipid phase transition temperature (as monitored by differential scanning calorimetry) and is furthermore attributed to an entropic contribution. It is concluded that the choline dipole becomes slightly raised in its average orientation into the aqueous layer and that the rate is increased at which the headgroup is fluctuating and protruding. The observed molecular changes can thus be accommodated within a model where the effective accessible headgroup volume expands with increasing hydration.

Full text

PDF
1441

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bechinger B., Seelig J. Conformational changes of the phosphatidylcholine headgroup due to membrane dehydration. A 2H-NMR study. Chem Phys Lipids. 1991 May-Jun;58(1-2):1–5. doi: 10.1016/0009-3084(91)90105-k. [DOI] [PubMed] [Google Scholar]
  2. Borle F., Seelig J. Hydration of Escherichia coli lipids. Deuterium T1 relaxation time studies of phosphatidylglycerol, phosphatidylethanolamine and phosphatidylcholine. Biochim Biophys Acta. 1983 Oct 26;735(1):131–136. doi: 10.1016/0005-2736(83)90268-7. [DOI] [PubMed] [Google Scholar]
  3. Büldt G., Gally H. U., Seelig J., Zaccai G. Neutron diffraction studies on phosphatidylcholine model membranes. I. Head group conformation. J Mol Biol. 1979 Nov 15;134(4):673–691. doi: 10.1016/0022-2836(79)90479-0. [DOI] [PubMed] [Google Scholar]
  4. Cevc G., Marsh D. Hydration of noncharged lipid bilayer membranes. Theory and experiments with phosphatidylethanolamines. Biophys J. 1985 Jan;47(1):21–31. doi: 10.1016/S0006-3495(85)83872-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Davenport J. B., Fisher L. R. Interaction of water with egg lecithin in benzene solution. Chem Phys Lipids. 1975 Aug;14(4):275–290. doi: 10.1016/0009-3084(75)90062-6. [DOI] [PubMed] [Google Scholar]
  6. Davis J. H. The description of membrane lipid conformation, order and dynamics by 2H-NMR. Biochim Biophys Acta. 1983 Mar 21;737(1):117–171. doi: 10.1016/0304-4157(83)90015-1. [DOI] [PubMed] [Google Scholar]
  7. Finer E. G., Darke A. Phospholipid hydration studied by deuteron magnetic resonace spectroscopy. Chem Phys Lipids. 1974 Feb;12(1):1–16. doi: 10.1016/0009-3084(74)90064-4. [DOI] [PubMed] [Google Scholar]
  8. Fung B. M., McAdams J. L. The interaction between water and the polar head in inverted phosphatidylcholine micelles. A 2H and 31P relaxation study. Biochim Biophys Acta. 1976 Nov 18;451(1):313–320. doi: 10.1016/0304-4165(76)90281-6. [DOI] [PubMed] [Google Scholar]
  9. Gally H. U., Niederberger W., Seelig J. Conformation and motion of the choline head group in bilayers of dipalmitoyl-3-sn-phosphatidylcholine. Biochemistry. 1975 Aug 12;14(16):3647–3652. doi: 10.1021/bi00687a021. [DOI] [PubMed] [Google Scholar]
  10. Jendrasiak G. L., Hasty J. H. The hydration of phospholipids. Biochim Biophys Acta. 1974 Jan 23;337(1):79–91. doi: 10.1016/0005-2760(74)90042-3. [DOI] [PubMed] [Google Scholar]
  11. LUZZATI V., HUSSON F. The structure of the liquid-crystalline phasis of lipid-water systems. J Cell Biol. 1962 Feb;12:207–219. doi: 10.1083/jcb.12.2.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. LeNeveu D. M., Rand R. P., Parsegian V. A. Measurement of forces between lecithin bilayers. Nature. 1976 Feb 19;259(5544):601–603. doi: 10.1038/259601a0. [DOI] [PubMed] [Google Scholar]
  13. McIntosh T. J., Magid A. D., Simon S. A. Steric repulsion between phosphatidylcholine bilayers. Biochemistry. 1987 Nov 17;26(23):7325–7332. doi: 10.1021/bi00397a020. [DOI] [PubMed] [Google Scholar]
  14. Scherer P. G., Seelig J. Electric charge effects on phospholipid headgroups. Phosphatidylcholine in mixtures with cationic and anionic amphiphiles. Biochemistry. 1989 Sep 19;28(19):7720–7728. doi: 10.1021/bi00445a030. [DOI] [PubMed] [Google Scholar]
  15. Seelig J. Deuterium magnetic resonance: theory and application to lipid membranes. Q Rev Biophys. 1977 Aug;10(3):353–418. doi: 10.1017/s0033583500002948. [DOI] [PubMed] [Google Scholar]
  16. Seelig J., Macdonald P. M., Scherer P. G. Phospholipid head groups as sensors of electric charge in membranes. Biochemistry. 1987 Dec 1;26(24):7535–7541. doi: 10.1021/bi00398a001. [DOI] [PubMed] [Google Scholar]
  17. Seelig J., Seelig A. Lipid conformation in model membranes and biological membranes. Q Rev Biophys. 1980 Feb;13(1):19–61. doi: 10.1017/s0033583500000305. [DOI] [PubMed] [Google Scholar]
  18. Simon S. A., Fink C. A., Kenworthy A. K., McIntosh T. J. The hydration pressure between lipid bilayers. Comparison of measurements using x-ray diffraction and calorimetry. Biophys J. 1991 Mar;59(3):538–546. doi: 10.1016/S0006-3495(91)82270-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sixl F., Watts A. Interactions between phospholipid head groups at membrane interfaces: a deuterium and phosphorus nuclear magnetic resonance and spin-label electron spin resonance study. Biochemistry. 1982 Dec 7;21(25):6446–6452. doi: 10.1021/bi00268a020. [DOI] [PubMed] [Google Scholar]
  20. Walter W. V., Hayes R. G. Nuclear magnetic resonance studies of the interaction of water with the polar region of phosphatidylcholine micelles in benzene. Biochim Biophys Acta. 1971 Dec 3;249(2):528–538. doi: 10.1016/0005-2736(71)90128-3. [DOI] [PubMed] [Google Scholar]
  21. Wiener M. C., White S. H. Structure of a fluid dioleoylphosphatidylcholine bilayer determined by joint refinement of x-ray and neutron diffraction data. III. Complete structure. Biophys J. 1992 Feb;61(2):434–447. doi: 10.1016/S0006-3495(92)81849-0. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES