Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1994 May;66(5):1515–1521. doi: 10.1016/S0006-3495(94)80942-7

An electron spin resonance study of interactions between phosphatidylcholine and phosphatidylserine in oriented membranes.

M Ge 1, D E Budil 1, J H Freed 1
PMCID: PMC1275871  PMID: 8061200

Abstract

A detailed electron spin resonance (ESR) study of mixtures of 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) and phosphatidylserine (POPS) in oriented multilayers in the liquid crystalline phase is reported with the purpose of characterizing the effects of headgroup mixing on the structural and dynamical properties of the acyl chains. These studies were performed over a range of blends of POPC and POPS and temperatures, utilizing the spin-labeled lipids 16-phosphatidylcholine and 5-phosphatidylcholine as well as cholestane (CSL). The ESR spectra were analyzed by nonlinear least-squares fitting using detailed spectral simulations. Whereas CSL shows almost no variation in ordering and rotational dynamics versus mole fraction POPS, (i.e. XPS), and 5-PC shows small effects, the weakly ordered end-chain labeled 16-PC shows large relative effects, such that the orientational order parameter, S is at a minimum for XPS = 0.5 where it is about one-third the value observed for XPS = 0 and 1. This is directly reflected in the ESR spectrum as a substantial variation in the hyperfine splitting with XPS. The least-squares analysis also shows a reduction in rotational diffusion coefficient, R perpendicular by a fractor of 2 for XPS = 0.5 and permits the estimation of S2, the ordering parameter representing deviations from cylindrically symmetric alignment. These results are contrasted with 2H NMR studies which were insensitive to effects of mixing headgroups on the acyl chains. The ESR results are consistent with a somewhat increased disorder in the end-chain region as well as a small amount of chain tilting upon mixing POPC and POPS. They demonstrate the high sensitivity of ESR to subtle effects in chain ordering and dynamics.

Full text

PDF
1515

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Browning J. L., Seelig J. Bilayers of phosphatidylserine: a deuterium and phosphorus nuclear magnetic resonance study. Biochemistry. 1980 Mar 18;19(6):1262–1270. doi: 10.1021/bi00547a034. [DOI] [PubMed] [Google Scholar]
  2. De Boeck H., Zidovetzki R. Interactions of saturated diacylglycerols with phosphatidylcholine bilayers: A 2H NMR study. Biochemistry. 1992 Jan 21;31(2):623–630. doi: 10.1021/bi00117a046. [DOI] [PubMed] [Google Scholar]
  3. Devaux P. F., Hoatson G. L., Favre E., Fellmann P., Farren B., MacKay A. L., Bloom M. Interaction of cytochrome c with mixed dimyristoylphosphatidylcholine-dimyristoylphosphatidylserine bilayers: a deuterium nuclear magnetic resonance study. Biochemistry. 1986 Jul 1;25(13):3804–3812. doi: 10.1021/bi00361a011. [DOI] [PubMed] [Google Scholar]
  4. Earle K. A., Moscicki J. K., Ge M., Budil D. E., Freed J. H. 250-GHz electron spin resonance studies of polarity gradients along the aliphatic chains in phospholipid membranes. Biophys J. 1994 Apr;66(4):1213–1221. doi: 10.1016/S0006-3495(94)80905-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ge M., Freed J. H. An electron spin resonance study of interactions between gramicidin A' and phosphatidylcholine bilayers. Biophys J. 1993 Nov;65(5):2106–2123. doi: 10.1016/S0006-3495(93)81255-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Huang J., Swanson J. E., Dibble A. R., Hinderliter A. K., Feigenson G. W. Nonideal mixing of phosphatidylserine and phosphatidylcholine in the fluid lamellar phase. Biophys J. 1993 Feb;64(2):413–425. doi: 10.1016/S0006-3495(93)81382-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kar L., Ney-Igner E., Freed J. H. Electron spin resonance and electron-spin-echo study of oriented multilayers of L alpha-dipalmitoylphosphatidylcholine water systems. Biophys J. 1985 Oct;48(4):569–595. doi: 10.1016/S0006-3495(85)83814-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Roux M., Neumann J. M. Deuterium NMR study of head-group deuterated phosphatidylserine in pure and binary phospholipid bilayers. Interactions with monovalent cations Na+ and Li+. FEBS Lett. 1986 Apr 7;199(1):33–38. doi: 10.1016/0014-5793(86)81218-2. [DOI] [PubMed] [Google Scholar]
  9. Roux M., Neumann J. M., Hodges R. S., Devaux P. F., Bloom M. Conformational changes of phospholipid headgroups induced by a cationic integral membrane peptide as seen by deuterium magnetic resonance. Biochemistry. 1989 Mar 7;28(5):2313–2321. doi: 10.1021/bi00431a050. [DOI] [PubMed] [Google Scholar]
  10. Seelig J., Macdonald P. M., Scherer P. G. Phospholipid head groups as sensors of electric charge in membranes. Biochemistry. 1987 Dec 1;26(24):7535–7541. doi: 10.1021/bi00398a001. [DOI] [PubMed] [Google Scholar]
  11. Shin Y. K., Budil D. E., Freed J. H. Thermodynamics and dynamics of phosphatidylcholine-cholesterol mixed model membranes in the liquid crystalline state: effects of water. Biophys J. 1993 Sep;65(3):1283–1294. doi: 10.1016/S0006-3495(93)81160-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Shin Y. K., Freed J. H. Dynamic imaging of lateral diffusion by electron spin resonance and study of rotational dynamics in model membranes. Effect of cholesterol. Biophys J. 1989 Mar;55(3):537–550. doi: 10.1016/S0006-3495(89)82847-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Shin Y. K., Freed J. H. Thermodynamics of phosphatidylcholine-cholesterol mixed model membranes in the liquid crystalline state studied by the orientational order parameter. Biophys J. 1989 Dec;56(6):1093–1100. doi: 10.1016/S0006-3495(89)82757-2. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES