Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1994 May;66(5):1631–1641. doi: 10.1016/S0006-3495(94)80955-5

Pressure denaturation of the bacteriophage P22 coat protein and its entropic stabilization in icosahedral shells.

P E Prevelige Jr 1, J King 1, J L Silva 1
PMCID: PMC1275883  PMID: 8061212

Abstract

The pressure stability of bacteriophage P22 coat protein in both monomeric and polymeric forms under hydrostatic pressure was examined using light scattering, fluorescence emission, polarization, and lifetime methodology. The monomeric protein is very unstable toward pressure and undergoes significant structural changes at pressures as low as 0.5 kbar. These structural changes ultimately lead to denaturation of the subunit. Comparison of the protein denatured by pressure to that in guanidine hydrochloride suggests that pressure results in partial unfolding, perhaps by a domain mechanism. Fluorescence lifetime measurements indicate that at atmospheric pressure the local environments of the tryptophans are remarkably similar, suggesting they may be clustered. In contrast to the monomeric protein subunit, the protein when polymerized into procapsid shells is very stable to applied pressure and does not dissociate with pressure up to 2.5 kbar. However, under applied pressure the procapsid shells are cold-labile, suggesting they are entropically stabilized. The significance of these results in terms of virus assembly are discussed.

Full text

PDF
1631

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alcala J. R., Gratton E., Prendergast F. G. Fluorescence lifetime distributions in proteins. Biophys J. 1987 Apr;51(4):597–604. doi: 10.1016/S0006-3495(87)83384-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alcala J. R., Gratton E., Prendergast F. G. Resolvability of fluorescence lifetime distributions using phase fluorometry. Biophys J. 1987 Apr;51(4):587–596. doi: 10.1016/S0006-3495(87)83383-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bazinet C., Benbasat J., King J., Carazo J. M., Carrascosa J. L. Purification and organization of the gene 1 portal protein required for phage P22 DNA packaging. Biochemistry. 1988 Mar 22;27(6):1849–1856. doi: 10.1021/bi00406a009. [DOI] [PubMed] [Google Scholar]
  4. CASPAR D. L., KLUG A. Physical principles in the construction of regular viruses. Cold Spring Harb Symp Quant Biol. 1962;27:1–24. doi: 10.1101/sqb.1962.027.001.005. [DOI] [PubMed] [Google Scholar]
  5. Da Poian A. T., Oliveira A. C., Gaspar L. P., Silva J. L., Weber G. Reversible pressure dissociation of R17 bacteriophage. The physical individuality of virus particles. J Mol Biol. 1993 Jun 20;231(4):999–1008. doi: 10.1006/jmbi.1993.1347. [DOI] [PubMed] [Google Scholar]
  6. Eftink M. R., Ghiron C. A., Kautz R. A., Fox R. O. Fluorescence and conformational stability studies of Staphylococcus nuclease and its mutants, including the less stable nuclease-concanavalin A hybrids. Biochemistry. 1991 Feb 5;30(5):1193–1199. doi: 10.1021/bi00219a005. [DOI] [PubMed] [Google Scholar]
  7. Eppler K., Wyckoff E., Goates J., Parr R., Casjens S. Nucleotide sequence of the bacteriophage P22 genes required for DNA packaging. Virology. 1991 Aug;183(2):519–538. doi: 10.1016/0042-6822(91)90981-g. [DOI] [PubMed] [Google Scholar]
  8. Foguel D., Chaloub R. M., Silva J. L., Crofts A. R., Weber G. Pressure and low temperature effects on the fluorescence emission spectra and lifetimes of the photosynthetic components of cyanobacteria. Biophys J. 1992 Dec;63(6):1613–1622. doi: 10.1016/S0006-3495(92)81756-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fuller M. T., King J. Purification of the coat and scaffolding proteins from procapsids of bacteriophage P22. Virology. 1981 Jul 30;112(2):529–547. doi: 10.1016/0042-6822(81)90300-7. [DOI] [PubMed] [Google Scholar]
  10. Galisteo M. L., King J. Conformational transformations in the protein lattice of phage P22 procapsids. Biophys J. 1993 Jul;65(1):227–235. doi: 10.1016/S0006-3495(93)81073-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gratton E., Alcala J. R., Marriott G. Rotations of tryptophan residues in proteins. Biochem Soc Trans. 1986 Oct;14(5):835–838. doi: 10.1042/bst0140835. [DOI] [PubMed] [Google Scholar]
  12. Gratton E., Limkeman M., Lakowicz J. R., Maliwal B. P., Cherek H., Laczko G. Resolution of mixtures of fluorophores using variable-frequency phase and modulation data. Biophys J. 1984 Oct;46(4):479–486. doi: 10.1016/S0006-3495(84)84044-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Heremans K. High pressure effects on proteins and other biomolecules. Annu Rev Biophys Bioeng. 1982;11:1–21. doi: 10.1146/annurev.bb.11.060182.000245. [DOI] [PubMed] [Google Scholar]
  14. Jaenicke R. Folding and association of proteins. Prog Biophys Mol Biol. 1987;49(2-3):117–237. doi: 10.1016/0079-6107(87)90011-3. [DOI] [PubMed] [Google Scholar]
  15. King J., Casjens S. Catalytic head assembling protein in virus morphogenesis. Nature. 1974 Sep 13;251(5471):112–119. doi: 10.1038/251112a0. [DOI] [PubMed] [Google Scholar]
  16. Lakowicz J. R., Laczko G., Cherek H., Gratton E., Limkeman M. Analysis of fluorescence decay kinetics from variable-frequency phase shift and modulation data. Biophys J. 1984 Oct;46(4):463–477. doi: 10.1016/S0006-3495(84)84043-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Paladini A. A., Jr, Weber G. Pressure-induced reversible dissociation of enolase. Biochemistry. 1981 Apr 28;20(9):2587–2593. doi: 10.1021/bi00512a034. [DOI] [PubMed] [Google Scholar]
  18. Peng X., Jonas J., Silva J. L. Molten-globule conformation of Arc repressor monomers determined by high-pressure 1H NMR spectroscopy. Proc Natl Acad Sci U S A. 1993 Mar 1;90(5):1776–1780. doi: 10.1073/pnas.90.5.1776. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Prasad B. V., Prevelige P. E., Marietta E., Chen R. O., Thomas D., King J., Chiu W. Three-dimensional transformation of capsids associated with genome packaging in a bacterial virus. J Mol Biol. 1993 May 5;231(1):65–74. doi: 10.1006/jmbi.1993.1257. [DOI] [PubMed] [Google Scholar]
  20. Prevelige P. E., Jr, Fasman G. D. Structural studies of acetylated and control inner core histones. Biochemistry. 1987 May 19;26(10):2944–2955. doi: 10.1021/bi00384a041. [DOI] [PubMed] [Google Scholar]
  21. Prevelige P. E., Jr, Thomas D., King J. Nucleation and growth phases in the polymerization of coat and scaffolding subunits into icosahedral procapsid shells. Biophys J. 1993 Mar;64(3):824–835. doi: 10.1016/S0006-3495(93)81443-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Prevelige P. E., Jr, Thomas D., King J. Scaffolding protein regulates the polymerization of P22 coat subunits into icosahedral shells in vitro. J Mol Biol. 1988 Aug 20;202(4):743–757. doi: 10.1016/0022-2836(88)90555-4. [DOI] [PubMed] [Google Scholar]
  23. Rossmann M. G. Constraints on the assembly of spherical virus particles. Virology. 1984 Apr 15;134(1):1–11. doi: 10.1016/0042-6822(84)90267-8. [DOI] [PubMed] [Google Scholar]
  24. Royer C. A., Gardner J. A., Beechem J. M., Brochon J. C., Matthews K. S. Resolution of the fluorescence decay of the two tryptophan residues of lac repressor using single tryptophan mutants. Biophys J. 1990 Aug;58(2):363–378. doi: 10.1016/S0006-3495(90)82383-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Royer C. A., Hinck A. P., Loh S. N., Prehoda K. E., Peng X., Jonas J., Markley J. L. Effects of amino acid substitutions on the pressure denaturation of staphylococcal nuclease as monitored by fluorescence and nuclear magnetic resonance spectroscopy. Biochemistry. 1993 May 18;32(19):5222–5232. doi: 10.1021/bi00070a034. [DOI] [PubMed] [Google Scholar]
  26. Royer C. A. Investigation of the structural determinants of the intrinsic fluorescence emission of the trp repressor using single tryptophan mutants. Biophys J. 1992 Sep;63(3):741–750. doi: 10.1016/S0006-3495(92)81658-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Royer C. A., Weber G., Daly T. J., Matthews K. S. Dissociation of the lactose repressor protein tetramer using high hydrostatic pressure. Biochemistry. 1986 Dec 16;25(25):8308–8315. doi: 10.1021/bi00373a027. [DOI] [PubMed] [Google Scholar]
  28. Silva J. L., Miles E. W., Weber G. Pressure dissociation and conformational drift of the beta dimer of tryptophan synthase. Biochemistry. 1986 Sep 23;25(19):5780–5786. doi: 10.1021/bi00367a065. [DOI] [PubMed] [Google Scholar]
  29. Silva J. L., Silveira C. F., Correia Júnior A., Pontes L. Dissociation of a native dimer to a molten globule monomer. Effects of pressure and dilution on the association equilibrium of arc repressor. J Mol Biol. 1992 Jan 20;223(2):545–555. doi: 10.1016/0022-2836(92)90669-b. [DOI] [PubMed] [Google Scholar]
  30. Silva J. L., Villas-Boas M., Bonafe C. F., Meirelles N. C. Anomalous pressure dissociation of large protein aggregates. Lack of concentration dependence and irreversibility at extreme degrees of dissociation of extracellular hemoglobin. J Biol Chem. 1989 Sep 25;264(27):15863–15868. [PubMed] [Google Scholar]
  31. Silva J. L., Weber G. Pressure stability of proteins. Annu Rev Phys Chem. 1993;44:89–113. doi: 10.1146/annurev.pc.44.100193.000513. [DOI] [PubMed] [Google Scholar]
  32. Silva J. L., Weber G. Pressure-induced dissociation of brome mosaic virus. J Mol Biol. 1988 Jan 5;199(1):149–159. doi: 10.1016/0022-2836(88)90385-3. [DOI] [PubMed] [Google Scholar]
  33. Steven A. C. Conformational change--an alternative energy source? Exothermic phase transition in phage capsid maturation. Biophys J. 1993 Jul;65(1):5–6. doi: 10.1016/S0006-3495(93)81022-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Steven A. C., Greenstone H. L., Booy F. P., Black L. W., Ross P. D. Conformational changes of a viral capsid protein. Thermodynamic rationale for proteolytic regulation of bacteriophage T4 capsid expansion, co-operativity, and super-stabilization by soc binding. J Mol Biol. 1992 Dec 5;228(3):870–884. doi: 10.1016/0022-2836(92)90871-g. [DOI] [PubMed] [Google Scholar]
  35. Teschke C. M., King J. Folding of the phage P22 coat protein in vitro. Biochemistry. 1993 Oct 12;32(40):10839–10847. doi: 10.1021/bi00091a040. [DOI] [PubMed] [Google Scholar]
  36. Weber G., Drickamer H. G. The effect of high pressure upon proteins and other biomolecules. Q Rev Biophys. 1983 Feb;16(1):89–112. doi: 10.1017/s0033583500004935. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES