Abstract
We present here an efficient and accurate procedure for modeling of the three-dimensional structures of polypeptides in the explicit solvent water based on molecular dynamics calculations. Using the toxic domain analog of heat-stable enterotoxin as a model peptide, we examined the utilities of two molecular dynamics techniques with the system containing the explicit solvent. One is the potential-scaled molecular dynamics that had been designed for effective conformational analyses of biomolecules with the explicit solvent water by partially scaling down the potential energies involved in the solute molecules. The other is the variation of Berendsen's weak coupling method (referred to as "hot-solute" method), in which only the solute of the system is heated to a high temperature while the solvent is kept at a normal temperature. Each method successfully increased the rate of folding of the peptides, and the most effective was a combination of the two methods. Moreover, the final structure obtained via cooling process successfully reproduced the experimentally known structure from the extended amino acid sequence using only the distance restraints representing three disulfide bonds in the peptide. Additional distance restraints derived from some of the NOE cross peaks accelerated the folding of the peptide, but gave almost the same structure as in the case without these additional restraints. Because a similar calculation without the explicit solvent could not reproduce the known structure, it is suggested that the explicit solvent water could play an important role in the modeling. The methods presented here have the potential for accurate modeling even when less experimental information was available.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aimoto S., Takao T., Shimonishi Y., Hara S., Takeda T., Takeda Y., Miwatani T. Amino-acid sequence of a heat-stable enterotoxin produced by human enterotoxigenic Escherichia coli. Eur J Biochem. 1982 Dec 15;129(2):257–263. doi: 10.1111/j.1432-1033.1982.tb07047.x. [DOI] [PubMed] [Google Scholar]
- Aimoto S., Watanabe H., Ikemura H., Shimonishi Y., Takeda T., Takeda Y., Miwatani T. Chemical synthesis of a highly potent and heat-stable analog of an enterotoxin produced by a human strain of enterotoxigenic Escherichia coli. Biochem Biophys Res Commun. 1983 Apr 15;112(1):320–326. doi: 10.1016/0006-291x(83)91833-8. [DOI] [PubMed] [Google Scholar]
- Brünger A. T., Kuriyan J., Karplus M. Crystallographic R factor refinement by molecular dynamics. Science. 1987 Jan 23;235(4787):458–460. doi: 10.1126/science.235.4787.458. [DOI] [PubMed] [Google Scholar]
- Gariépy J., Judd A. K., Schoolnik G. K. Importance of disulfide bridges in the structure and activity of Escherichia coli enterotoxin ST1b. Proc Natl Acad Sci U S A. 1987 Dec;84(24):8907–8911. doi: 10.1073/pnas.84.24.8907. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gariépy J., Lane A., Frayman F., Wilbur D., Robien W., Schoolnik G. K., Jardetzky O. Structure of the toxic domain of the Escherichia coli heat-stable enterotoxin ST I. Biochemistry. 1986 Dec 2;25(24):7854–7866. doi: 10.1021/bi00372a011. [DOI] [PubMed] [Google Scholar]
- Holak T. A., Nilges M., Oschkinat H. Improved strategies for the determination of protein structures from NMR data: the solution structure of acyl carrier protein. FEBS Lett. 1989 Jan 2;242(2):218–224. doi: 10.1016/0014-5793(89)80473-9. [DOI] [PubMed] [Google Scholar]
- Kirkpatrick S., Gelatt C. D., Jr, Vecchi M. P. Optimization by simulated annealing. Science. 1983 May 13;220(4598):671–680. doi: 10.1126/science.220.4598.671. [DOI] [PubMed] [Google Scholar]
- Levitt M., Sharon R. Accurate simulation of protein dynamics in solution. Proc Natl Acad Sci U S A. 1988 Oct;85(20):7557–7561. doi: 10.1073/pnas.85.20.7557. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller K. E., Mukhopadhyay C., Cagas P., Bush C. A. Solution structure of the Lewis x oligosaccharide determined by NMR spectroscopy and molecular dynamics simulations. Biochemistry. 1992 Jul 28;31(29):6703–6709. doi: 10.1021/bi00144a009. [DOI] [PubMed] [Google Scholar]
- Nilges M., Gronenborn A. M., Brünger A. T., Clore G. M. Determination of three-dimensional structures of proteins by simulated annealing with interproton distance restraints. Application to crambin, potato carboxypeptidase inhibitor and barley serine proteinase inhibitor 2. Protein Eng. 1988 Apr;2(1):27–38. doi: 10.1093/protein/2.1.27. [DOI] [PubMed] [Google Scholar]
- Ohkubo T., Kobayashi Y., Shimonishi Y., Kyogoku Y., Braun W., Go N. A conformational study of polypeptides in solution by 1H-nmr and distance geometry. Biopolymers. 1986;25 (Suppl):S123–S134. [PubMed] [Google Scholar]
- Ozaki H., Sato T., Kubota H., Hata Y., Katsube Y., Shimonishi Y. Molecular structure of the toxin domain of heat-stable enterotoxin produced by a pathogenic strain of Escherichia coli. A putative binding site for a binding protein on rat intestinal epithelial cell membranes. J Biol Chem. 1991 Mar 25;266(9):5934–5941. [PubMed] [Google Scholar]
- Shimonishi Y., Hidaka Y., Koizumi M., Hane M., Aimoto S., Takeda T., Miwatani T., Takeda Y. Mode of disulfide bond formation of a heat-stable enterotoxin (STh) produced by a human strain of enterotoxigenic Escherichia coli. FEBS Lett. 1987 May 4;215(1):165–170. doi: 10.1016/0014-5793(87)80134-5. [DOI] [PubMed] [Google Scholar]
- Takao T., Hitouji T., Aimoto S., Shimonishi Y., Hara S., Takeda T., Takeda Y., Miwatani T. Amino acid sequence of a heat-stable enterotoxin isolated from enterotoxigenic Escherichia coli strain 18D. FEBS Lett. 1983 Feb 7;152(1):1–5. doi: 10.1016/0014-5793(83)80469-4. [DOI] [PubMed] [Google Scholar]
- Yoshimura S., Ikemura H., Watanabe H., Aimoto S., Shimonishi Y., Hara S., Takeda T., Miwatani T., Takeda Y. Essential structure for full enterotoxigenic activity of heat-stable enterotoxin produced by enterotoxigenic Escherichia coli. FEBS Lett. 1985 Feb 11;181(1):138–142. doi: 10.1016/0014-5793(85)81129-7. [DOI] [PubMed] [Google Scholar]
- van Gunsteren W. F., Mark A. E. On the interpretation of biochemical data by molecular dynamics computer simulation. Eur J Biochem. 1992 Mar 15;204(3):947–961. doi: 10.1111/j.1432-1033.1992.tb16716.x. [DOI] [PubMed] [Google Scholar]
