Abstract
The random sequence of openings and closings of single ion channels and the channel conductances have been the object of intense study over the past two decades with a view toward illuminating the underlying kinetics of the channel protein molecules. Channels that are sensitive to voltage, such as many K(+)-selective channels, have been particularly useful, because the kinetic rates can be manipulated by changing the membrane voltage. Most such studies have been performed under stationary conditions and usually at a single temperature. Here we report the results of experiments with sinusoidal modulation of the membrane potential performed at several temperatures. Dwell time and cycle histograms, objects not normally associated with ion channel experiments, are herein reported. From the last, the transition probability densities for channel opening and closing events are obtained. A new and unusual phase anticipation is observed in the cycle histograms, and its temperature dependence is measured.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aldrich R. W., Corey D. P., Stevens C. F. A reinterpretation of mammalian sodium channel gating based on single channel recording. Nature. 1983 Dec 1;306(5942):436–441. doi: 10.1038/306436a0. [DOI] [PubMed] [Google Scholar]
- Ball F. G., Rice J. A. Stochastic models for ion channels: introduction and bibliography. Math Biosci. 1992 Dec;112(2):189–206. doi: 10.1016/0025-5564(92)90023-p. [DOI] [PubMed] [Google Scholar]
- Bezanilla F. A high capacity data recording device based on a digital audio processor and a video cassette recorder. Biophys J. 1985 Mar;47(3):437–441. doi: 10.1016/S0006-3495(85)83935-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Correa A. M., Bezanilla F., Latorre R. Gating kinetics of batrachotoxin-modified Na+ channels in the squid giant axon. Voltage and temperature effects. Biophys J. 1992 May;61(5):1332–1352. doi: 10.1016/S0006-3495(92)81941-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Demo S. D., Yellen G. The inactivation gate of the Shaker K+ channel behaves like an open-channel blocker. Neuron. 1991 Nov;7(5):743–753. doi: 10.1016/0896-6273(91)90277-7. [DOI] [PubMed] [Google Scholar]
- Douglass J. K., Wilkens L., Pantazelou E., Moss F. Noise enhancement of information transfer in crayfish mechanoreceptors by stochastic resonance. Nature. 1993 Sep 23;365(6444):337–340. doi: 10.1038/365337a0. [DOI] [PubMed] [Google Scholar]
- Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
- Horn L. W. A novel method for the observation of membrane transporter dynamics. Biophys J. 1993 Jan;64(1):281–289. doi: 10.1016/S0006-3495(93)81365-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoshi T., Zagotta W. N., Aldrich R. W. Two types of inactivation in Shaker K+ channels: effects of alterations in the carboxy-terminal region. Neuron. 1991 Oct;7(4):547–556. doi: 10.1016/0896-6273(91)90367-9. [DOI] [PubMed] [Google Scholar]
- Longtin A, Bulsara A, Moss F. Time-interval sequences in bistable systems and the noise-induced transmission of information by sensory neurons. Phys Rev Lett. 1991 Jul 29;67(5):656–659. doi: 10.1103/PhysRevLett.67.656. [DOI] [PubMed] [Google Scholar]
- Magleby K. L., Weiss D. S. Identifying kinetic gating mechanisms for ion channels by using two-dimensional distributions of simulated dwell times. Proc Biol Sci. 1990 Sep 22;241(1302):220–228. doi: 10.1098/rspb.1990.0089. [DOI] [PubMed] [Google Scholar]
- McManus O. B., Blatz A. L., Magleby K. L. Inverse relationship of the durations of adjacent open and shut intervals for C1 and K channels. Nature. 1985 Oct 17;317(6038):625–627. doi: 10.1038/317625a0. [DOI] [PubMed] [Google Scholar]
- McManus O. B., Magleby K. L. Kinetic time constants independent of previous single-channel activity suggest Markov gating for a large conductance Ca-activated K channel. J Gen Physiol. 1989 Dec;94(6):1037–1070. doi: 10.1085/jgp.94.6.1037. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nobile M., Carbone E., Lux H. D., Zucker H. Temperature sensitivity of Ca currents in chick sensory neurones. Pflugers Arch. 1990 Mar;415(6):658–663. doi: 10.1007/BF02584002. [DOI] [PubMed] [Google Scholar]
- Oxford G. S. Some kinetic and steady-state properties of sodium channels after removal of inactivation. J Gen Physiol. 1981 Jan;77(1):1–22. doi: 10.1085/jgp.77.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pellegrini M., Simoni A., Pellegrino M. Two types of K+ channels in excised patches of somatic membrane of the leech AP neuron. Brain Res. 1989 Apr 3;483(2):294–300. doi: 10.1016/0006-8993(89)90173-x. [DOI] [PubMed] [Google Scholar]
- Petracchi D., Barbi M., Pellegrini M., Pellegrino M., Simoni A. Use of conditioned distributions in the analysis of ion channel recordings. Eur Biophys J. 1991;20(1):31–39. doi: 10.1007/BF00183277. [DOI] [PubMed] [Google Scholar]
- Shen W. K., Rasmusson R. L., Liu Q. Y., Crews A. L., Strauss H. C. Voltage and temperature dependence of single K+ channels isolated from canine cardiac sarcoplasmic reticulum. Biophys J. 1993 Aug;65(2):747–754. doi: 10.1016/S0006-3495(93)81100-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stevens C. F. Interactions between intrinsic membrane protein and electric field. An approach to studying nerve excitability. Biophys J. 1978 May;22(2):295–306. doi: 10.1016/S0006-3495(78)85490-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stiebler I. B., Narins P. M. Temperature-dependence of auditory nerve response properties in the frog. Hear Res. 1990 Jun;46(1-2):63–81. doi: 10.1016/0378-5955(90)90140-k. [DOI] [PubMed] [Google Scholar]
- Tsong T. Y. Electrical modulation of membrane proteins: enforced conformational oscillations and biological energy and signal transductions. Annu Rev Biophys Biophys Chem. 1990;19:83–106. doi: 10.1146/annurev.bb.19.060190.000503. [DOI] [PubMed] [Google Scholar]
- Tsong T. Y. Molecular recognition and processing of periodic signals in cells: study of activation of membrane ATPases by alternating electric fields. Biochim Biophys Acta. 1992 Mar 26;1113(1):53–70. doi: 10.1016/0304-4157(92)90034-8. [DOI] [PubMed] [Google Scholar]
- Weaver J. C., Astumian R. D. The response of living cells to very weak electric fields: the thermal noise limit. Science. 1990 Jan 26;247(4941):459–462. doi: 10.1126/science.2300806. [DOI] [PubMed] [Google Scholar]
- Woodward A. M., Kell D. B. Confirmation by using mutant strains that the membrane-bound H(+)-ATPase is the major source of non-linear dielectricity in Saccharomyces cerevisiae. FEMS Microbiol Lett. 1991 Nov 1;68(1):91–95. doi: 10.1016/0378-1097(91)90401-u. [DOI] [PubMed] [Google Scholar]
- Zhou T, Moss F, Jung P. Escape-time distributions of a periodically modulated bistable system with noise. Phys Rev A. 1990 Sep 15;42(6):3161–3169. doi: 10.1103/physreva.42.3161. [DOI] [PubMed] [Google Scholar]
