Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1994 Jun;66(6):1853–1863. doi: 10.1016/S0006-3495(94)80979-8

Gating of the squid sodium channel at positive potentials. I. Macroscopic ionic and gating currents.

A M Correa 1, F Bezanilla 1
PMCID: PMC1275911  PMID: 8075323

Abstract

Macroscopic ionic sodium currents and gating currents were studied in voltage-clamped, dialyzed giant axons of the squid Loligo pealei under conditions of regular and inverse sodium gradients. Sodium currents showed regular kinetics but inactivation was incomplete, showing a maintained current for depolarizations lasting 18 ms. The ratio of the maintained current to the peak current increased with depolarization and it did not depend on the direction of the current flow or the sodium gradient. The time constant of inactivation was not affected by the sodium gradient. Double-pulse experiments allowed the separation of a normal inactivating component and a noninactivating component of the sodium currents. In gating current experiments, the results from double-pulse protocols showed that the charge was decreased by the prepulse and that the slow component of the 'on' gating current was preferentially depressed. As expected, charge immobilization was established faster at higher depolarizations than at low depolarizations, however, the amount of immobilized charge was unaffected by the pulse amplitude. This indicates that the incomplete sodium inactivation observed at high depolarizations is not the result of decreased charge immobilization; the maintained current must be due to a conductance that appears after normal charge immobilization and fast inactivation.

Full text

PDF
1853

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adelman W. J., Jr, Senft J. P. Effects of internal sodium on ionic conductance of internally perfused axons. Nature. 1966 Nov 5;212(5062):614–616. doi: 10.1038/212614a0. [DOI] [PubMed] [Google Scholar]
  2. Aldrich R. W., Corey D. P., Stevens C. F. A reinterpretation of mammalian sodium channel gating based on single channel recording. Nature. 1983 Dec 1;306(5942):436–441. doi: 10.1038/306436a0. [DOI] [PubMed] [Google Scholar]
  3. Armstrong C. M., Bezanilla F. Inactivation of the sodium channel. II. Gating current experiments. J Gen Physiol. 1977 Nov;70(5):567–590. doi: 10.1085/jgp.70.5.567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bezanilla F., Armstrong C. M. Inactivation of the sodium channel. I. Sodium current experiments. J Gen Physiol. 1977 Nov;70(5):549–566. doi: 10.1085/jgp.70.5.549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bezanilla F. Single sodium channels from the squid giant axon. Biophys J. 1987 Dec;52(6):1087–1090. doi: 10.1016/S0006-3495(87)83304-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chandler W. K., Meves H. Evidence for two types of sodium conductance in axons perfused with sodium fluoride solution. J Physiol. 1970 Dec;211(3):653–678. doi: 10.1113/jphysiol.1970.sp009298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chandler W. K., Meves H. Rate constants associated with changes in sodium conductance in axons perfused with sodium fluoride. J Physiol. 1970 Dec;211(3):679–705. doi: 10.1113/jphysiol.1970.sp009299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chandler W. K., Meves H. Sodium and potassium currents in squid axons perfused with fluoride solutions. J Physiol. 1970 Dec;211(3):623–652. doi: 10.1113/jphysiol.1970.sp009297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Correa A. M., Bezanilla F. Gating of the squid sodium channel at positive potentials: II. Single channels reveal two open states. Biophys J. 1994 Jun;66(6):1864–1878. doi: 10.1016/S0006-3495(94)80980-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Goldman L. Gating current kinetics in Myxicola giant axons. Order of the back transition rate constants. Biophys J. 1991 Mar;59(3):574–589. doi: 10.1016/S0006-3495(91)82273-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Goldman L. Internal cations, membrane current, and sodium inactivation gate closure in Myxicola giant axons. Biophys J. 1988 Dec;54(6):1027–1038. doi: 10.1016/S0006-3495(88)83040-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. HODGKIN A. L., HUXLEY A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500–544. doi: 10.1113/jphysiol.1952.sp004764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  14. Horn R., Vandenberg C. A. Statistical properties of single sodium channels. J Gen Physiol. 1984 Oct;84(4):505–534. doi: 10.1085/jgp.84.4.505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Isom L. L., De Jongh K. S., Patton D. E., Reber B. F., Offord J., Charbonneau H., Walsh K., Goldin A. L., Catterall W. A. Primary structure and functional expression of the beta 1 subunit of the rat brain sodium channel. Science. 1992 May 8;256(5058):839–842. doi: 10.1126/science.1375395. [DOI] [PubMed] [Google Scholar]
  16. Keynes R. D., Greeff N. G., Forster I. C. Activation, inactivation and recovery in the sodium channels of the squid giant axon dialysed with different solutions. Philos Trans R Soc Lond B Biol Sci. 1992 Sep 29;337(1282):471–484. doi: 10.1098/rstb.1992.0122. [DOI] [PubMed] [Google Scholar]
  17. Keynes R. D., Meves H., Hof D. The dual effect of internal tetramethylammonium ions on the open states of the sodium channel in the squid giant axon. Proc Biol Sci. 1992 Jul 22;249(1324):101–106. doi: 10.1098/rspb.1992.0090. [DOI] [PubMed] [Google Scholar]
  18. Keynes R. D., Meves H. Properties of the voltage sensor for the opening and closing of the sodium channels in the squid giant axon. Proc Biol Sci. 1993 Jul 22;253(1336):61–68. doi: 10.1098/rspb.1993.0082. [DOI] [PubMed] [Google Scholar]
  19. Nagy K. Evidence for multiple open states of sodium channels in neuroblastoma cells. J Membr Biol. 1987;96(3):251–262. doi: 10.1007/BF01869307. [DOI] [PubMed] [Google Scholar]
  20. Nagy K., Kiss T., Hof D. Single Na channels in mouse neuroblastoma cell membrane. Indications for two open states. Pflugers Arch. 1983 Dec;399(4):302–308. doi: 10.1007/BF00652757. [DOI] [PubMed] [Google Scholar]
  21. Oxford G. S., Yeh J. Z. Interactions of monovalent cations with sodium channels in squid axon. I. Modification of physiological inactivation gating. J Gen Physiol. 1985 Apr;85(4):583–602. doi: 10.1085/jgp.85.4.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Perozo E., Bezanilla F., Dipolo R. Modulation of K channels in dialyzed squid axons. ATP-mediated phosphorylation. J Gen Physiol. 1989 Jun;93(6):1195–1218. doi: 10.1085/jgp.93.6.1195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Quandt F. N., Narahashi T. Modification of single Na+ channels by batrachotoxin. Proc Natl Acad Sci U S A. 1982 Nov;79(21):6732–6736. doi: 10.1073/pnas.79.21.6732. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Scanley B. E., Hanck D. A., Chay T., Fozzard H. A. Kinetic analysis of single sodium channels from canine cardiac Purkinje cells. J Gen Physiol. 1990 Mar;95(3):411–437. doi: 10.1085/jgp.95.3.411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Shenkel S., Bezanilla F. Patch recordings from the electrocytes of electrophorus. Na channel gating currents. J Gen Physiol. 1991 Sep;98(3):465–478. doi: 10.1085/jgp.98.3.465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Shoukimas J. J., French R. J. Incomplete inactivation of sodium currents in nonperfused squid axon. Biophys J. 1980 Nov;32(2):857–862. doi: 10.1016/S0006-3495(80)85021-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sigworth F. J. Covariance of nonstationary sodium current fluctuations at the node of Ranvier. Biophys J. 1981 Apr;34(1):111–133. doi: 10.1016/S0006-3495(81)84840-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Starkus J. G., Rayner M. D. Gating current "fractionation" in crayfish giant axons. Biophys J. 1991 Nov;60(5):1101–1119. doi: 10.1016/S0006-3495(91)82146-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Stimers J. R., Bezanilla F., Taylor R. E. Sodium channel activation in the squid giant axon. Steady state properties. J Gen Physiol. 1985 Jan;85(1):65–82. doi: 10.1085/jgp.85.1.65. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Vandenberg C. A., Bezanilla F. A sodium channel gating model based on single channel, macroscopic ionic, and gating currents in the squid giant axon. Biophys J. 1991 Dec;60(6):1511–1533. doi: 10.1016/S0006-3495(91)82186-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Vandenberg C. A., Bezanilla F. Single-channel, macroscopic, and gating currents from sodium channels in the squid giant axon. Biophys J. 1991 Dec;60(6):1499–1510. doi: 10.1016/S0006-3495(91)82185-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. West J. W., Patton D. E., Scheuer T., Wang Y., Goldin A. L., Catterall W. A. A cluster of hydrophobic amino acid residues required for fast Na(+)-channel inactivation. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10910–10914. doi: 10.1073/pnas.89.22.10910. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES