Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1994 Jun;66(6):1904–1914. doi: 10.1016/S0006-3495(94)80984-1

Intramolecular and intermolecular enzymatic modulation of ion channels in excised membrane patches.

K Bielefeldt 1, M B Jackson 1
PMCID: PMC1275916  PMID: 7521226

Abstract

A calcium-activated potassium channel in posterior pituitary nerve terminals was modulated by phosphorylation and dephosphorylation. Nearly every patch of membrane containing this channel also contained both membrane bound protein phosphatase and membrane-bound protein kinase. By examining the statistical and kinetic nature of phosphorylation and dephosphorylation in excised patches, it was possible to evaluate two contrasting models for these enzymatic reactions. One of these models treated catalysis as an intermolecular process in which the enzyme and substrate are separate molecular species that diffuse and encounter one another during collisions. The second model treated catalysis as an intramolecular process in which the enzyme and substrate reside within a stable macromolecular complex. The study began with a Poisson analysis of the distribution of channel number in patches, and of the number of protein phosphatase-free and protein kinase-free patches. Subsequent kinetic analysis of dephosphorylation yielded an estimate of the mean number of protein phosphatase molecules per patch that was similar to the value obtained from Poisson analysis. Because these two estimates were independent predictions based on the intermolecular model, their agreement supported this model. Analysis of channel number in protein phosphatase-free patches and of the rarity of patches showing partial but incomplete rundown provided additional support for the intermolecular model over the intramolecular model. Furthermore, dephosphorylation exhibited monotonic kinetics with a rate well below the diffusion limit. Thus, several different lines of analysis support the intermolecular model for dephosphorylation, in which the protein phosphatase must encounter its substrate to effect catalysis. In contrast to the monotonic kinetics of dephosphorylation, the phosphorylation reaction exhibited sigmoidal kinetics, with a rate that depended on membrane potential. Voltage dependence is an unlikely property for a kinetic step involving encounters resulting from diffusion. Furthermore, the velocity of the phosphorylation reaction exceeded the diffusion limit, and this observation is inconsistent with the intermolecular model. Thus, both intermolecular and intramolecular enzymatic mechanisms operate in the modulation of the calcium-activated potassium channel of the posterior pituitary. These studies provide a functional characterization of the interactions between enzyme and substrate in intact patches of cell membrane.

Full text

PDF
1904

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Angelides K. J., Elmer L. W., Loftus D., Elson E. Distribution and lateral mobility of voltage-dependent sodium channels in neurons. J Cell Biol. 1988 Jun;106(6):1911–1925. doi: 10.1083/jcb.106.6.1911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Armstrong D. L., Rossier M. F., Shcherbatko A. D., White R. E. Enzymatic gating of voltage-activated calcium channels. Ann N Y Acad Sci. 1991;635:26–34. doi: 10.1111/j.1749-6632.1991.tb36478.x. [DOI] [PubMed] [Google Scholar]
  3. Atkinson N. S., Robertson G. A., Ganetzky B. A component of calcium-activated potassium channels encoded by the Drosophila slo locus. Science. 1991 Aug 2;253(5019):551–555. doi: 10.1126/science.1857984. [DOI] [PubMed] [Google Scholar]
  4. Berg H. C., Purcell E. M. Physics of chemoreception. Biophys J. 1977 Nov;20(2):193–219. doi: 10.1016/S0006-3495(77)85544-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bielefeldt K., Jackson M. B. A calcium-activated potassium channel causes frequency-dependent action-potential failures in a mammalian nerve terminal. J Neurophysiol. 1993 Jul;70(1):284–298. doi: 10.1152/jn.1993.70.1.284. [DOI] [PubMed] [Google Scholar]
  6. Bielefeldt K., Jackson M. B. Phosphorylation and dephosphorylation modulate a Ca(2+)-activated K+ channel in rat peptidergic nerve terminals. J Physiol. 1994 Mar 1;475(2):241–254. doi: 10.1113/jphysiol.1994.sp020065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bielefeldt K., Rotter J. L., Jackson M. B. Three potassium channels in rat posterior pituitary nerve terminals. J Physiol. 1992 Dec;458:41–67. doi: 10.1113/jphysiol.1992.sp019405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Carl A., Kenyon J. L., Uemura D., Fusetani N., Sanders K. M. Regulation of Ca(2+)-activated K+ channels by protein kinase A and phosphatase inhibitors. Am J Physiol. 1991 Aug;261(2 Pt 1):C387–C392. doi: 10.1152/ajpcell.1991.261.2.C387. [DOI] [PubMed] [Google Scholar]
  9. Chung S. K., Reinhart P. H., Martin B. L., Brautigan D., Levitan I. B. Protein kinase activity closely associated with a reconstituted calcium-activated potassium channel. Science. 1991 Aug 2;253(5019):560–562. doi: 10.1126/science.1857986. [DOI] [PubMed] [Google Scholar]
  10. Guy H. R., Conti F. Pursuing the structure and function of voltage-gated channels. Trends Neurosci. 1990 Jun;13(6):201–206. doi: 10.1016/0166-2236(90)90160-c. [DOI] [PubMed] [Google Scholar]
  11. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  12. Hescheler J., Kameyama M., Trautwein W., Mieskes G., Söling H. D. Regulation of the cardiac calcium channel by protein phosphatases. Eur J Biochem. 1987 Jun 1;165(2):261–266. doi: 10.1111/j.1432-1033.1987.tb11436.x. [DOI] [PubMed] [Google Scholar]
  13. Ho K., Nichols C. G., Lederer W. J., Lytton J., Vassilev P. M., Kanazirska M. V., Hebert S. C. Cloning and expression of an inwardly rectifying ATP-regulated potassium channel. Nature. 1993 Mar 4;362(6415):31–38. doi: 10.1038/362031a0. [DOI] [PubMed] [Google Scholar]
  14. Horn R., Patlak J. Single channel currents from excised patches of muscle membrane. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6930–6934. doi: 10.1073/pnas.77.11.6930. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jackson M. B. Ion channels. Single-channel analysis. Methods Enzymol. 1992;207:729–746. doi: 10.1016/0076-6879(92)07053-q. [DOI] [PubMed] [Google Scholar]
  16. Jackson M. B., Konnerth A., Augustine G. J. Action potential broadening and frequency-dependent facilitation of calcium signals in pituitary nerve terminals. Proc Natl Acad Sci U S A. 1991 Jan 15;88(2):380–384. doi: 10.1073/pnas.88.2.380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Jackson M. B. Passive current flow and morphology in the terminal arborizations of the posterior pituitary. J Neurophysiol. 1993 Mar;69(3):692–702. doi: 10.1152/jn.1993.69.3.692. [DOI] [PubMed] [Google Scholar]
  18. Jan L. Y., Jan Y. N. Tracing the roots of ion channels. Cell. 1992 May 29;69(5):715–718. doi: 10.1016/0092-8674(92)90280-p. [DOI] [PubMed] [Google Scholar]
  19. Kim D. Modulation of acetylcholine-activated K+ channel function in rat atrial cells by phosphorylation. J Physiol. 1991 Jun;437:133–155. doi: 10.1113/jphysiol.1991.sp018588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kume H., Takai A., Tokuno H., Tomita T. Regulation of Ca2+-dependent K+-channel activity in tracheal myocytes by phosphorylation. Nature. 1989 Sep 14;341(6238):152–154. doi: 10.1038/341152a0. [DOI] [PubMed] [Google Scholar]
  21. Lechleiter J. D., Dartt D. A., Brehm P. Vasoactive intestinal peptide activates Ca2(+)-dependent K+ channels through a cAMP pathway in mouse lacrimal cells. Neuron. 1988 May;1(3):227–235. doi: 10.1016/0896-6273(88)90143-2. [DOI] [PubMed] [Google Scholar]
  22. Levitan I. B. Modulation of ion channels in neurons and other cells. Annu Rev Neurosci. 1988;11:119–136. doi: 10.1146/annurev.ne.11.030188.001003. [DOI] [PubMed] [Google Scholar]
  23. Marks P. W., Maxfield F. R. Preparation of solutions with free calcium concentration in the nanomolar range using 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid. Anal Biochem. 1991 Feb 15;193(1):61–71. doi: 10.1016/0003-2697(91)90044-t. [DOI] [PubMed] [Google Scholar]
  24. McCloskey M. A., Poo M. M. Rates of membrane-associated reactions: reduction of dimensionality revisited. J Cell Biol. 1986 Jan;102(1):88–96. doi: 10.1083/jcb.102.1.88. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rehm H., Pelzer S., Cochet C., Chambaz E., Tempel B. L., Trautwein W., Pelzer D., Lazdunski M. Dendrotoxin-binding brain membrane protein displays a K+ channel activity that is stimulated by both cAMP-dependent and endogenous phosphorylations. Biochemistry. 1989 Jul 25;28(15):6455–6460. doi: 10.1021/bi00441a044. [DOI] [PubMed] [Google Scholar]
  26. Reinhart P. H., Chung S., Martin B. L., Brautigan D. L., Levitan I. B. Modulation of calcium-activated potassium channels from rat brain by protein kinase A and phosphatase 2A. J Neurosci. 1991 Jun;11(6):1627–1635. doi: 10.1523/JNEUROSCI.11-06-01627.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Riordan J. R., Rommens J. M., Kerem B., Alon N., Rozmahel R., Grzelczak Z., Zielenski J., Lok S., Plavsic N., Chou J. L. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science. 1989 Sep 8;245(4922):1066–1073. doi: 10.1126/science.2475911. [DOI] [PubMed] [Google Scholar]
  28. Saxton M. J., Owicki J. C. Concentration effects on reactions in membranes: rhodopsin and transducin. Biochim Biophys Acta. 1989 Feb 13;979(1):27–34. doi: 10.1016/0005-2736(89)90519-1. [DOI] [PubMed] [Google Scholar]
  29. Taylor R. E., Bezanilla F. Sodium and gating current time shifts resulting from changes in initial conditions. J Gen Physiol. 1983 Jun;81(6):773–784. doi: 10.1085/jgp.81.6.773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Thomas P. J., Shenbagamurthi P., Ysern X., Pedersen P. L. Cystic fibrosis transmembrane conductance regulator: nucleotide binding to a synthetic peptide. Science. 1991 Feb 1;251(4993):555–557. doi: 10.1126/science.1703660. [DOI] [PubMed] [Google Scholar]
  31. de Peyer J. E., Cachelin A. B., Levitan I. B., Reuter H. Ca2+ -activated K+ conductance in internally perfused snail neurons is enhanced by protein phosphorylation. Proc Natl Acad Sci U S A. 1982 Jul;79(13):4207–4211. doi: 10.1073/pnas.79.13.4207. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES