Abstract
Three surfactants (chlorpromazine hydrochloride, thioridazine hydrochloride, and sodium deoxycholate) are found to absorb just as strongly into the protein-containing membranes of erythrocytes as into the phospholipid bilayers of synthetic vesicles. In the concentration region where hemolysis occurs and the Langmuir adsorption isotherm is no longer valid, one may use a phase partition model in which the erythrocyte membrane is one of the phases. The partition coefficients, expressed as the ratio of mole fraction surfactant in the membrane lipid phase to concentration of surfactant in the aqueous phase, have been calculated at the point of saturation in the erythrocyte membrane. These values are Ky = 430 M-1 (chlorpromazine, pH 5.9), 550 M-1 (deoxycholate, pH 7.6), and 640 M-1 (thioridazine, pH 5.9), in isotonic buffer at 27 degrees C. Corresponding values for synthetic vesicles made from dimyristoylphosphatidylcholine are Kx = 230 M-1 (chlorpromazine, 0.12 M buffer/KCl pH 5.9), 440 M-1 (deoxycholate, 0.20 M buffer/NaCl pH 8.0) and 510 M-1 (thioridazine, 0.12 M buffer/KCl pH 5.9), at 27 degrees C. It appears that the surfactants become an integral part of the bilayer in both vesicles and natural membranes and that the absorption is not of a peripheral nature. There is no evidence that the presence of proteins in the natural membrane inhibits the absorption of these surfactants in any way.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Binford J. S., Jr, Wadsö I. Calorimetric determination of the partition coefficient for chlorpromazine hydrochloride in aqueous suspensions of dimyristoylphosphatidylcholine vesicles. J Biochem Biophys Methods. 1984 May;9(2):121–131. doi: 10.1016/0165-022x(84)90003-4. [DOI] [PubMed] [Google Scholar]
- Bondy B., Remien J. Differential binding of chlorpromazine to human blood cells: application of the hygroscopic desorption method. Life Sci. 1981 Jan 26;28(4):441–449. doi: 10.1016/0024-3205(81)90091-6. [DOI] [PubMed] [Google Scholar]
- Conrad M. J., Singer S. J. Evidence for a large internal pressure in biological membranes. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5202–5206. doi: 10.1073/pnas.76.10.5202. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Conrad M. J., Singer S. J. The solubility of amphipathic molecules in biological membranes and lipid bilayers and its implications for membrane structure. Biochemistry. 1981 Feb 17;20(4):808–818. doi: 10.1021/bi00507a024. [DOI] [PubMed] [Google Scholar]
- Davies R. J., Jones M. N. The thermal behaviour of phosphatidylcholine-glycophorin monolayers in relation to monolayer and bilayer internal pressure. Biochim Biophys Acta. 1992 Jan 10;1103(1):8–12. doi: 10.1016/0005-2736(92)90051-m. [DOI] [PubMed] [Google Scholar]
- Hanahan D. J., Ekholm J. E. The preparation of red cell ghosts (membranes). Methods Enzymol. 1974;31:168–172. doi: 10.1016/0076-6879(74)31018-x. [DOI] [PubMed] [Google Scholar]
- Helenius A., Simons K. Solubilization of membranes by detergents. Biochim Biophys Acta. 1975 Mar 25;415(1):29–79. doi: 10.1016/0304-4157(75)90016-7. [DOI] [PubMed] [Google Scholar]
- Kwant W. O., Seeman P. The membrane concentration of a local anesthetic (chlorpromazine). Biochim Biophys Acta. 1969;183(3):530–543. doi: 10.1016/0005-2736(69)90167-9. [DOI] [PubMed] [Google Scholar]
- Olivier J. L., Chachaty C., Wolf C., Daveloose D., Bereziat G. Binding of two spin-labelled derivatives of chlorpromazine to human erythrocytes. Biochem J. 1989 Dec 15;264(3):633–641. doi: 10.1042/bj2640633. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roth S., Seeman P. The membrane concentrations of neutral and positive anesthetics (alcohols, chlorpromazine, morphine) fit the Meyer-Overton rule of anesthesia; negative narcotics do not. Biochim Biophys Acta. 1972 Jan 17;255(1):207–219. doi: 10.1016/0005-2736(72)90023-5. [DOI] [PubMed] [Google Scholar]
- SUNDERMAN F. W., MACFATE R. P., MACFADYEN D. A., STEVENSON G. F., COPELAND B. E. Symposium on clinical hemoglobinometry. Am J Clin Pathol. 1953 Jun;23(6):519–598. doi: 10.1093/ajcp/23.6.519. [DOI] [PubMed] [Google Scholar]
- Singer S. J. Current concepts of molecular organization in cell membranes. Biochem Soc Trans. 1981 Jun;9(3):203–206. doi: 10.1042/bst0090203. [DOI] [PubMed] [Google Scholar]
- Zachowski A., Durand P. Biphasic nature of the binding of cationic amphipaths with artificial and biological membranes. Biochim Biophys Acta. 1988 Jan 22;937(2):411–416. doi: 10.1016/0005-2736(88)90263-5. [DOI] [PubMed] [Google Scholar]
