Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1994 Jun;66(6):2051–2061. doi: 10.1016/S0006-3495(94)80999-3

Rigorous analysis of light diffraction ellipsometry by striated muscle fibers.

E Sidick 1, R J Baskin 1, Y Yeh 1, A Knoesen 1
PMCID: PMC1275930  PMID: 8075338

Abstract

A rigorous analysis of both the transverse electric and the transverse magnetic modes of light diffracted from a muscle fiber is performed. From the expressions of electromagnetic field components, ellipsometry parameters, differential field ratio, r, and birefringence, delta n, have been obtained. A theoretical formulation that introduces myofibril skew planes and a randomization factor about the average skew plane yields a relationship that shows good fit to experimental data of Chen et al. (Biophys. J. 56:595, 1989) and Burton et al. (J. Muscle Res. Cell Motil. 11:258, 1990). Using indices of refraction within each of the regions of the sarcomeric unit that are consistent with our knowledge of the molecular structure of the sarcomere in the analysis, it is shown that the transition from the rigor state to the resting state leads to as much as a approximately 13% decrease in the r-value and an equally significant change in delta n.

Full text

PDF
2051

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baskin R. J., Yeh Y., Burton K., Chen J. S., Jones M. Optical depolarization changes in single, skinned muscle fibers. Evidence for cross-bridge involvement. Biophys J. 1986 Jul;50(1):63–74. doi: 10.1016/S0006-3495(86)83439-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Burton K., Baskin R. J., Yeh Y. Crossbridge activity monitored from the state of polarization of light diffracted by activated frog muscle fibres. J Muscle Res Cell Motil. 1990 Jun;11(3):258–270. doi: 10.1007/BF01843579. [DOI] [PubMed] [Google Scholar]
  3. Chen J. S., Baskin R. J., Baskin R. J., Burton K., Shen S., Yeh Y. Polarization states of diffracted light. Changes accompanying fiber activation. Biophys J. 1989 Sep;56(3):595–605. doi: 10.1016/S0006-3495(89)82706-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Colby R. H. Intrinsic birefringence of glycerinated myofibrils. J Cell Biol. 1971 Dec;51(3):763–771. doi: 10.1083/jcb.51.3.763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Curmi P. M., Stone D. B., Schneider D. K., Spudich J. A., Mendelson R. A. Comparison of the structure of myosin subfragment 1 bound to actin and free in solution. A neutron scattering study using actin made "invisible" by deuteration. J Mol Biol. 1988 Oct 5;203(3):781–798. doi: 10.1016/0022-2836(88)90209-4. [DOI] [PubMed] [Google Scholar]
  6. Fajer P. G., Fajer E. A., Thomas D. D. Myosin heads have a broad orientational distribution during isometric muscle contraction: time-resolved EPR studies using caged ATP. Proc Natl Acad Sci U S A. 1990 Jul;87(14):5538–5542. doi: 10.1073/pnas.87.14.5538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. HUXLEY A. F., NIEDERGERKE R. Measurement of the striations of isolated muscle fibres with the interference microscope. J Physiol. 1958 Dec 30;144(3):403–425. doi: 10.1113/jphysiol.1958.sp006110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Harada Y., Noguchi A., Kishino A., Yanagida T. Sliding movement of single actin filaments on one-headed myosin filaments. Nature. 1987 Apr 23;326(6115):805–808. doi: 10.1038/326805a0. [DOI] [PubMed] [Google Scholar]
  9. Haskell R. C., Carlson F. D., Blank P. S. Form birefringence of muscle. Biophys J. 1989 Aug;56(2):401–413. doi: 10.1016/S0006-3495(89)82686-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hirose K., Lenart T. D., Murray J. M., Franzini-Armstrong C., Goldman Y. E. Flash and smash: rapid freezing of muscle fibers activated by photolysis of caged ATP. Biophys J. 1993 Jul;65(1):397–408. doi: 10.1016/S0006-3495(93)81061-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Irving M., Lombardi V., Piazzesi G., Ferenczi M. A. Myosin head movements are synchronous with the elementary force-generating process in muscle. Nature. 1992 May 14;357(6374):156–158. doi: 10.1038/357156a0. [DOI] [PubMed] [Google Scholar]
  12. Jones H. M., Baskin R. J., Yeh Y. The molecular origin of birefringence in skeletal muscle. Contribution of myosin subfragment S-1. Biophys J. 1991 Nov;60(5):1217–1228. doi: 10.1016/S0006-3495(91)82156-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Leung A. F., Cheung M. K. Polarization changes in light diffracted from contracting muscle fibers. Cell Biophys. 1987 Apr;10(2):127–144. doi: 10.1007/BF02797396. [DOI] [PubMed] [Google Scholar]
  14. Leung A. F. Degree of polarization of light diffracted from resting striated muscle. Cell Biophys. 1987 Apr;10(2):145–168. doi: 10.1007/BF02797397. [DOI] [PubMed] [Google Scholar]
  15. Peckham M., Irving M. Myosin crossbridge orientation in demembranated muscle fibres studied by birefringence and X-ray diffraction measurements. J Mol Biol. 1989 Nov 5;210(1):113–126. doi: 10.1016/0022-2836(89)90294-5. [DOI] [PubMed] [Google Scholar]
  16. Pollard T. D., Bhandari D., Maupin P., Wachsstock D., Weeds A. G., Zot H. G. Direct visualization by electron microscopy of the weakly bound intermediates in the actomyosin adenosine triphosphatase cycle. Biophys J. 1993 Feb;64(2):454–471. doi: 10.1016/S0006-3495(93)81387-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Rayment I., Holden H. M., Whittaker M., Yohn C. B., Lorenz M., Holmes K. C., Milligan R. A. Structure of the actin-myosin complex and its implications for muscle contraction. Science. 1993 Jul 2;261(5117):58–65. doi: 10.1126/science.8316858. [DOI] [PubMed] [Google Scholar]
  18. Rayment I., Rypniewski W. R., Schmidt-Bäse K., Smith R., Tomchick D. R., Benning M. M., Winkelmann D. A., Wesenberg G., Holden H. M. Three-dimensional structure of myosin subfragment-1: a molecular motor. Science. 1993 Jul 2;261(5117):50–58. doi: 10.1126/science.8316857. [DOI] [PubMed] [Google Scholar]
  19. Sidick E., Knoesen A., Xian J. K., Yeh Y., Baskin R. J. Rigorous analysis of light diffraction by a striated muscle fibre. Proc Biol Sci. 1992 Sep 22;249(1326):247–257. doi: 10.1098/rspb.1992.0111. [DOI] [PubMed] [Google Scholar]
  20. Taylor D. L. Birefringence changes in vertebrate striated muscle. J Supramol Struct. 1975;3(2):181–191. doi: 10.1002/jss.400030212. [DOI] [PubMed] [Google Scholar]
  21. Thornhill R. A., Thomas N., Berovic N. Optical diffraction by well-ordered muscle fibres. Eur Biophys J. 1991;20(2):87–99. doi: 10.1007/BF00186257. [DOI] [PubMed] [Google Scholar]
  22. Toyoshima Y. Y., Kron S. J., Spudich J. A. The myosin step size: measurement of the unit displacement per ATP hydrolyzed in an in vitro assay. Proc Natl Acad Sci U S A. 1990 Sep;87(18):7130–7134. doi: 10.1073/pnas.87.18.7130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Wakabayashi K., Tokunaga M., Kohno I., Sugimoto Y., Hamanaka T., Takezawa Y., Wakabayashi T., Amemiya Y. Small-angle synchrotron x-ray scattering reveals distinct shape changes of the myosin head during hydrolysis of ATP. Science. 1992 Oct 16;258(5081):443–447. doi: 10.1126/science.1411537. [DOI] [PubMed] [Google Scholar]
  24. Yeh Y., Baskin R. J., Brown R. A., Burton K. Depolarization spectrum of diffracted light from muscle fiber. The intrinsic anisotropy component. Biophys J. 1985 May;47(5):739–742. doi: 10.1016/S0006-3495(85)83973-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Yeh Y., Baskin R. J. Theory of optical ellipsometric measurements from muscle diffraction studies. Biophys J. 1988 Aug;54(2):205–218. doi: 10.1016/S0006-3495(88)82949-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Yeh Y., Corcoran M. E., Baskin R. J., Lieber R. L. Optical depolarization changes on the diffraction pattern in the transition of skinned muscle fibers from relaxed to rigor state. Biophys J. 1983 Dec;44(3):343–351. doi: 10.1016/S0006-3495(83)84308-2. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES