Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1994 Jun;66(6):2139–2150. doi: 10.1016/S0006-3495(94)81009-4

The bacteriophage phi 29 head-tail connector shows 13-fold symmetry in both hexagonally packed arrays and as single particles.

V Tsuprun 1, D Anderson 1, E H Egelman 1
PMCID: PMC1275939  PMID: 8075347

Abstract

The symmetry of the phi 29 head-tail connector is controversial: several studies of two-dimensional arrays of the connector have found a 12-fold symmetry, while a recent study of isolated particles has found a 13-fold symmetry. To investigate whether a polymorphism of the structure might explain these different results, electron microscopy and image analysis were used to study both isolated connectors and particles in hexagonally packed arrays. The hexagonally packed arrays have a P1 symmetry, and the connectors displayed 13 subunits both in the arrays and as isolated single particles. While we do not observe a polymorphism between connectors in two-dimensional arrays and as isolated particles, data show that the connectors can exist with either 12 or 13 subunits. A three-dimensional reconstruction of our 13-fold connector was generated by combining an averaged side-view projection with the known symmetry. The structure of rosettes of the connectors formed in the presence of phi 29 prohead RNA (pRNA) was also examined. These rosettes contain five connectors arranged about a single connector in the center, and this arrangement may reflect an essential role of the pRNA in mediating a symmetry mismatch between either a 12- or 13-fold symmetric connector and a putative fivefold symmetric prohead portal vertex into which the connector fits.

Full text

PDF
2139

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson D., Bodley J. W. Role of RNA in bacteriophage phi 29 DNA packaging. J Struct Biol. 1990 Jul-Sep;104(1-3):70–74. doi: 10.1016/1047-8477(90)90059-l. [DOI] [PubMed] [Google Scholar]
  2. Bazinet C., Benbasat J., King J., Carazo J. M., Carrascosa J. L. Purification and organization of the gene 1 portal protein required for phage P22 DNA packaging. Biochemistry. 1988 Mar 22;27(6):1849–1856. doi: 10.1021/bi00406a009. [DOI] [PubMed] [Google Scholar]
  3. Bazinet C., King J. The DNA translocating vertex of dsDNA bacteriophage. Annu Rev Microbiol. 1985;39:109–129. doi: 10.1146/annurev.mi.39.100185.000545. [DOI] [PubMed] [Google Scholar]
  4. Bazinet C., Villafane R., King J. Novel second-site suppression of a cold-sensitive defect in phage P22 procapsid assembly. J Mol Biol. 1990 Dec 5;216(3):701–716. doi: 10.1016/0022-2836(90)90393-Z. [DOI] [PubMed] [Google Scholar]
  5. Boekema E. J., Berden J. A., van Heel M. G. Structure of mitochondrial F1-ATPase studied by electron microscopy and image processing. Biochim Biophys Acta. 1986 Oct 8;851(3):353–360. doi: 10.1016/0005-2728(86)90071-x. [DOI] [PubMed] [Google Scholar]
  6. Carazo J. M., Donate L. E., Herranz L., Secilla J. P., Carrascosa J. L. Three-dimensional reconstruction of the connector of bacteriophage phi 29 at 1.8 nm resolution. J Mol Biol. 1986 Dec 20;192(4):853–867. doi: 10.1016/0022-2836(86)90033-1. [DOI] [PubMed] [Google Scholar]
  7. Carazo J. M., Fujisawa H., Nakasu S., Carrascosa J. L. Bacteriophage T3 gene 8 product oligomer structure. J Ultrastruct Mol Struct Res. 1986 Feb;94(2):105–113. doi: 10.1016/0889-1605(86)90056-x. [DOI] [PubMed] [Google Scholar]
  8. Carazo J. M., Garcia N., Santisteban A., Carrascosa J. L. Structural study of tetragonal-ordered aggregates of phage phi 29 necks. J Ultrastruct Res. 1984 Oct;89(1):79–88. doi: 10.1016/s0022-5320(84)80025-8. [DOI] [PubMed] [Google Scholar]
  9. Carazo J. M., Santisteban A., Carrascosa J. L. Three-dimensional reconstruction of bacteriophage phi 29 neck particles at 2 X 2 nm resolution. J Mol Biol. 1985 May 5;183(1):79–88. doi: 10.1016/0022-2836(85)90282-7. [DOI] [PubMed] [Google Scholar]
  10. Carrascosa J. L., Carazo J. M., García N. Structural localization of the proteins of the head to tail connecting region of bacteriophage phi 29. Virology. 1983 Jan 15;124(1):133–143. [PubMed] [Google Scholar]
  11. Carrascosa J. L., Carazo J. M., Ibañez C., Santisteban A. Structure of phage phi 29 connector protein assembled in vivo. Virology. 1985 Mar;141(2):190–200. doi: 10.1016/0042-6822(85)90251-x. [DOI] [PubMed] [Google Scholar]
  12. Carrascosa J. L., Viñuela E., García N., Santisteban A. Structure of the head-tail connector of bacteriophage phi 29. J Mol Biol. 1982 Jan 15;154(2):311–324. doi: 10.1016/0022-2836(82)90066-3. [DOI] [PubMed] [Google Scholar]
  13. Crowther R. A., Amos L. A. Harmonic analysis of electron microscope images with rotational symmetry. J Mol Biol. 1971 Aug 28;60(1):123–130. doi: 10.1016/0022-2836(71)90452-9. [DOI] [PubMed] [Google Scholar]
  14. Dokland T., Lindqvist B. H., Fuller S. D. Image reconstruction from cryo-electron micrographs reveals the morphopoietic mechanism in the P2-P4 bacteriophage system. EMBO J. 1992 Mar;11(3):839–846. doi: 10.1002/j.1460-2075.1992.tb05121.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Donate L. E., Herranz L., Secilla J. P., Carazo J. M., Fujisawa H., Carrascosa J. L. Bacteriophage T3 connector: three-dimensional structure and comparison with other viral head-tail connecting regions. J Mol Biol. 1988 May 5;201(1):91–100. doi: 10.1016/0022-2836(88)90441-x. [DOI] [PubMed] [Google Scholar]
  16. Driedonks R. A., Engel A., tenHeggeler B., van Driel Gene 20 product of bacteriophage T4 its purification and structure. J Mol Biol. 1981 Nov 15;152(4):641–662. doi: 10.1016/0022-2836(81)90121-2. [DOI] [PubMed] [Google Scholar]
  17. Dube P., Tavares P., Lurz R., van Heel M. The portal protein of bacteriophage SPP1: a DNA pump with 13-fold symmetry. EMBO J. 1993 Apr;12(4):1303–1309. doi: 10.1002/j.1460-2075.1993.tb05775.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. García J. A., Méndez E., Salas M. Cloning, nucleotide sequence and high level expression of the gene coding for the connector protein of Bacillus subtilis phage phi 29. Gene. 1984 Oct;30(1-3):87–98. doi: 10.1016/0378-1119(84)90108-2. [DOI] [PubMed] [Google Scholar]
  19. Guo P. X., Erickson S., Anderson D. A small viral RNA is required for in vitro packaging of bacteriophage phi 29 DNA. Science. 1987 May 8;236(4802):690–694. doi: 10.1126/science.3107124. [DOI] [PubMed] [Google Scholar]
  20. Ibáez C., García J. A., Carrascosa J. L., Salas M. Overproduction and purification of the connector protein of Bacillus subtilis phage phi 29. Nucleic Acids Res. 1984 Mar 12;12(5):2351–2365. doi: 10.1093/nar/12.5.2351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Jiménez J., Santisteban A., Carazo J. M., Carrascosa J. L. Computer graphic display method for visualizing three-dimensional biological structures. Science. 1986 May 30;232(4754):1113–1115. doi: 10.1126/science.3754654. [DOI] [PubMed] [Google Scholar]
  22. Kochan J., Carrascosa J. L., Murialdo H. Bacteriophage lambda preconnectors. Purification and structure. J Mol Biol. 1984 Apr 15;174(3):433–447. doi: 10.1016/0022-2836(84)90330-9. [DOI] [PubMed] [Google Scholar]
  23. Penczek P., Radermacher M., Frank J. Three-dimensional reconstruction of single particles embedded in ice. Ultramicroscopy. 1992 Jan;40(1):33–53. [PubMed] [Google Scholar]
  24. Prasad B. V., Prevelige P. E., Marietta E., Chen R. O., Thomas D., King J., Chiu W. Three-dimensional transformation of capsids associated with genome packaging in a bacterial virus. J Mol Biol. 1993 May 5;231(1):65–74. doi: 10.1006/jmbi.1993.1257. [DOI] [PubMed] [Google Scholar]
  25. Turnquist S., Simon M., Egelman E., Anderson D. Supercoiled DNA wraps around the bacteriophage phi 29 head-tail connector. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10479–10483. doi: 10.1073/pnas.89.21.10479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Valpuesta J. M., Fujisawa H., Marco S., Carazo J. M., Carrascosa J. L. Three-dimensional structure of T3 connector purified from overexpressing bacteria. J Mol Biol. 1992 Mar 5;224(1):103–112. doi: 10.1016/0022-2836(92)90579-9. [DOI] [PubMed] [Google Scholar]
  27. Wichitwechkarn J., Johnson D., Anderson D. Mutant prohead RNAs in the in vitro packaging of bacteriophage phi 29 DNA-gp3. J Mol Biol. 1992 Feb 20;223(4):991–998. doi: 10.1016/0022-2836(92)90257-k. [DOI] [PubMed] [Google Scholar]
  28. Zahn R., Harris J. R., Pfeifer G., Plückthun A., Baumeister W. Two-dimensional crystals of the molecular chaperone GroEL reveal structural plasticity. J Mol Biol. 1993 Feb 5;229(3):579–584. doi: 10.1006/jmbi.1993.1062. [DOI] [PubMed] [Google Scholar]
  29. van Heel M., Frank J. Use of multivariate statistics in analysing the images of biological macromolecules. Ultramicroscopy. 1981;6(2):187–194. doi: 10.1016/0304-3991(81)90059-0. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES