Abstract
The stationary-state kinetic properties of a simplified two-state electro-conformational coupling model (ECC) in the presence of alternating rectangular electric potential pulses are derived analytically. Analytic expressions for the transport flux, the rate of electric energy dissipation, and the efficiency of the transducing system are obtained as a function of the amplitude and frequency of the oscillation. These formulas clarify some fundamental concept of the ECC model and are directly applicable to the interpretation and design of experiments. Based on these formulas, the reversibility and the degree of coupling of the system can be studied quantitatively. It is found that the oscillation-induced free energy transduction is reversible and tight-coupled only when the amplitude of the oscillating electric field is infinitely large. In general, the coupling is not tight when the amplitude of the electric field is finite. Furthermore, depending on the kinetic parameters of the model, there may exist a "critical" electric field amplitude, below which free energy transduction is not reversible. That is, energy may be transduced from the electric to the chemical, but not from the chemical to the electric.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Astumian R. D., Chock P. B., Tsong T. Y., Chen Y. D., Westerhoff H. V. Can free energy be transduced from electric noise? Proc Natl Acad Sci U S A. 1987 Jan;84(2):434–438. doi: 10.1073/pnas.84.2.434. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Astumian R. D. Effects of time-dependent electric fields on membrane transport. Biophys J. 1993 Jan;64(1):7–8. doi: 10.1016/S0006-3495(93)81334-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Astumian RD, Chock PB, Tsong TY, Westerhoff HV. Effects of oscillations and energy-driven fluctuations on the dynamics of enzyme catalysis and free-energy transduction. Phys Rev A Gen Phys. 1989 Jun 15;39(12):6416–6435. doi: 10.1103/physreva.39.6416. [DOI] [PubMed] [Google Scholar]
- Chen Y. D. Asymmetry and external noise-induced free energy transduction. Proc Natl Acad Sci U S A. 1987 Feb;84(3):729–733. doi: 10.1073/pnas.84.3.729. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Horn L. W. A novel method for the observation of membrane transporter dynamics. Biophys J. 1993 Jan;64(1):281–289. doi: 10.1016/S0006-3495(93)81365-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu D. S., Astumian R. D., Tsong T. Y. Activation of Na+ and K+ pumping modes of (Na,K)-ATPase by an oscillating electric field. J Biol Chem. 1990 May 5;265(13):7260–7267. [PubMed] [Google Scholar]
- Markin V. S., Tsong T. Y. Frequency and concentration windows for the electric activation of a membrane active transport system. Biophys J. 1991 Jun;59(6):1308–1316. doi: 10.1016/S0006-3495(91)82345-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robertson B., Astumian R. D. Interpretation of the effect of an oscillating electric field on membrane enzymes. Biochemistry. 1992 Jan 14;31(1):138–141. doi: 10.1021/bi00116a020. [DOI] [PubMed] [Google Scholar]
- Robertson B., Astumian R. D. Kinetics of a multistate enzyme in a large oscillating field. Biophys J. 1990 Apr;57(4):689–696. doi: 10.1016/S0006-3495(90)82590-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robertson B., Astumian R. D. Michaelis-Menten equation for an enzyme in an oscillating electric field. Biophys J. 1990 Oct;58(4):969–974. doi: 10.1016/S0006-3495(90)82441-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Serpersu E. H., Tsong T. Y. Activation of electrogenic Rb+ transport of (Na,K)-ATPase by an electric field. J Biol Chem. 1984 Jun 10;259(11):7155–7162. [PubMed] [Google Scholar]
- Serpersu E. H., Tsong T. Y. Stimulation of a ouabain-sensitive Rb+ uptake in human erthrocytes with an external electric field. J Membr Biol. 1983;74(3):191–201. doi: 10.1007/BF02332123. [DOI] [PubMed] [Google Scholar]
- Teissié J. Adenosine 5'-triphosphate synthesis in Escherichia coli submitted to a microsecond electric pulse. Biochemistry. 1986 Jan 28;25(2):368–373. doi: 10.1021/bi00350a014. [DOI] [PubMed] [Google Scholar]
- Tsong T. Y., Astumian R. D. Electroconformational coupling and membrane protein function. Prog Biophys Mol Biol. 1987;50(1):1–45. doi: 10.1016/0079-6107(87)90002-2. [DOI] [PubMed] [Google Scholar]
- Tsong T. Y., Astumian R. D. Electroconformational coupling: how membrane-bound ATPase transduces energy from dynamic electric fields. Annu Rev Physiol. 1988;50:273–290. doi: 10.1146/annurev.ph.50.030188.001421. [DOI] [PubMed] [Google Scholar]
- Tsong T. Y. Molecular recognition and processing of periodic signals in cells: study of activation of membrane ATPases by alternating electric fields. Biochim Biophys Acta. 1992 Mar 26;1113(1):53–70. doi: 10.1016/0304-4157(92)90034-8. [DOI] [PubMed] [Google Scholar]
- Westerhoff H. V., Tsong T. Y., Chock P. B., Chen Y. D., Astumian R. D. How enzymes can capture and transmit free energy from an oscillating electric field. Proc Natl Acad Sci U S A. 1986 Jul;83(13):4734–4738. doi: 10.1073/pnas.83.13.4734. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Witt H. T., Schlodder E., Gräber P. Membrane-bound ATP synthesis generated by an external electrical field. FEBS Lett. 1976 Oct 15;69(1):272–276. doi: 10.1016/0014-5793(76)80702-8. [DOI] [PubMed] [Google Scholar]
