Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1994 Jun;66(6):2173–2180. doi: 10.1016/S0006-3495(94)81013-6

Microwave dielectric measurements of erythrocyte suspensions.

J Z Bao 1, C C Davis 1, M L Swicord 1
PMCID: PMC1275943  PMID: 8075351

Abstract

Complex dielectric constants of human erythrocyte suspensions over a frequency range from 45 MHz to 26.5 GHz and a temperature range from 5 to 40 degrees C have been determined with the open-ended coaxial probe technique using an automated vector network analyzer (HP 8510). The spectra show two separate major dispersions (beta and gamma) and a much smaller dispersion between them. The two major dispersions are analyzed with a dispersion equation containing two Cole-Cole functions by means of a complex nonlinear least squares technique. The parameters of the equation at different temperatures have been determined. The low frequency behavior of the spectra suggests that the dielectric constant of the cell membrane increases when the temperature is above 35 degrees C. The real part of the dielectric constant at approximately 3.4 GHz remains almost constant when the temperature changes. The dispersion shifts with temperature in the manner of a thermally activated process, and the thermal activation enthalpies for the beta- and gamma-dispersions are 9.87 +/- 0.42 kcal/mol and 4.80 +/- 0.06 kcal/mol, respectively.

Full text

PDF
2173

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asami K., Takahashi Y., Takashima S. Dielectric properties of mouse lymphocytes and erythrocytes. Biochim Biophys Acta. 1989 Jan 17;1010(1):49–55. doi: 10.1016/0167-4889(89)90183-3. [DOI] [PubMed] [Google Scholar]
  2. Ballario C., Bonincontro A., Cametti C., Rosi A., Sportelli L. Conductivity of normal and pathological human erythrocytes (homozygous beta-thalassemia) at radiowave frequencies. Z Naturforsch C. 1984 Jan-Feb;39(1-2):160–166. doi: 10.1515/znc-1984-1-226. [DOI] [PubMed] [Google Scholar]
  3. Bao J. Z., Davis C. C., Schmukler R. E. Frequency domain impedance measurements of erythrocytes. Constant phase angle impedance characteristics and a phase transition. Biophys J. 1992 May;61(5):1427–1434. doi: 10.1016/S0006-3495(92)81948-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bao J. Z., Davis C. C., Schmukler R. E. Impedance spectroscopy of human erythrocytes: system calibration and nonlinear modeling. IEEE Trans Biomed Eng. 1993 Apr;40(4):364–378. doi: 10.1109/10.222329. [DOI] [PubMed] [Google Scholar]
  5. Bone S., Ginzburg B. Z., Morgan H., Wilson G., Zaba B. Time-domain dielectric spectroscopy applied to cell suspensions. Phys Med Biol. 1993 Apr;38(4):511–520. doi: 10.1088/0031-9155/38/4/003. [DOI] [PubMed] [Google Scholar]
  6. Carron C. P., Jarvis H. W., Saling P. M. Characterization of antibodies to idiotypic determinants of monoclonal anti-sperm antibodies. Biol Reprod. 1988 Jun;38(5):1093–1103. doi: 10.1095/biolreprod38.5.1093. [DOI] [PubMed] [Google Scholar]
  7. Chou C. K. Evaluation of microwave hyperthermia applicators. Bioelectromagnetics. 1992;13(6):581–597. doi: 10.1002/bem.2250130612. [DOI] [PubMed] [Google Scholar]
  8. Dissado L. A. A fractal interpretation of the dielectric response of animal tissues. Phys Med Biol. 1990 Nov;35(11):1487–1503. doi: 10.1088/0031-9155/35/11/005. [DOI] [PubMed] [Google Scholar]
  9. Foster K. R., Cheever E. A. Microwave radiometry in biomedicine: a reappraisal. Bioelectromagnetics. 1992;13(6):567–579. doi: 10.1002/bem.2250130611. [DOI] [PubMed] [Google Scholar]
  10. Grochulski T, Pszczólkowski L, Kempka M. Applicability of extended hydrodynamical model to dielectric relaxation in simple polar liquids. Phys Rev Lett. 1992 Jun 15;68(24):3635–3637. doi: 10.1103/PhysRevLett.68.3635. [DOI] [PubMed] [Google Scholar]
  11. Steinhoff H. J., Kramm B., Hess G., Owerdieck C., Redhardt A. Rotational and translational water diffusion in the hemoglobin hydration shell: dielectric and proton nuclear relaxation measurements. Biophys J. 1993 Oct;65(4):1486–1495. doi: 10.1016/S0006-3495(93)81217-7. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES