Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1994 Jun;66(6):2190–2201. doi: 10.1016/S0006-3495(94)81015-X

Aggregation efficiency of activated normal or fixed platelets in a simple shear field: effect of shear and fibrinogen occupancy.

Z Xia 1, M M Frojmovic 1
PMCID: PMC1275945  PMID: 8075353

Abstract

Shear rate can affect protein adsorption and platelet aggregation by regulating both the collision frequency and the capture efficiency (alpha). These effects were evaluated in well defined shear field in a micro-couette for shear rate G = 10 - 1000 s-1. The rate of protein binding was independent of G, shown for adsorption of albumin to latex beads and PAC1 to activated platelets. The initial aggregation rate for ADP-activated platelets in citrated platelet-rich plasma followed second order kinetics at the initial platelet concentrations between 20,000 and 60,000/microliters. alpha values, which dropped nearly fivefold for a 10-fold increase in G, were approximately proportional to G-1, contrary to a minor drop predicted by the theory that includes protein cross-bridging. Varying ADP concentration did not change alpha of maximally activated platelet subpopulations, suggesting that aggregation between unactivated and activated platelets is negligible. Directly blocking the unoccupied but activated GPIIb-IIIa receptors without affecting pre-bound Fg on "RGD"-activated, fixed platelets (AFP) by GRGDSP or Ro 43-5054 eliminated aggregation, suggesting that cross-bridging of GPIIb-IIIa on adjacent platelets by fibrinogen mediates aggregation. Alpha for AFP remained maximal (approximately 0.24) over 25-75% Fg occupancy, otherwise decreasing rapidly, with a half-maximum occurring at around 2% occupancy, suggesting that very few bound Fg were required to cause significant aggregation.

Full text

PDF
2190

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson G. H., Hellums J. D., Moake J., Alfrey C. P., Jr Platelet response to shear stress: changes in serotonin uptake, serotonin release, and ADP induced aggregation. Thromb Res. 1978 Dec;13(6):1039–1047. doi: 10.1016/0049-3848(78)90232-3. [DOI] [PubMed] [Google Scholar]
  2. Bell D. N., Goldsmith H. L. Platelet aggregation in poiseuille flow: II. Effect of shear rate. Microvasc Res. 1984 May;27(3):316–330. doi: 10.1016/0026-2862(84)90063-3. [DOI] [PubMed] [Google Scholar]
  3. Bell G. I. Models for the specific adhesion of cells to cells. Science. 1978 May 12;200(4342):618–627. doi: 10.1126/science.347575. [DOI] [PubMed] [Google Scholar]
  4. Belval T., Hellums J. D., Solis R. T. The kinetics of platelet aggregation induced by fluid-shearing stress. Microvasc Res. 1984 Nov;28(3):279–288. doi: 10.1016/0026-2862(84)90001-3. [DOI] [PubMed] [Google Scholar]
  5. Bennett J. S., Vilaire G. Exposure of platelet fibrinogen receptors by ADP and epinephrine. J Clin Invest. 1979 Nov;64(5):1393–1401. doi: 10.1172/JCI109597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chang H. N., Robertson C. R. Platelet aggregation by laminar shear and Brownian motion. Ann Biomed Eng. 1976 Jun;4(2):151–183. doi: 10.1007/BF02363645. [DOI] [PubMed] [Google Scholar]
  7. D'Souza S. E., Ginsberg M. H., Burke T. A., Lam S. C., Plow E. F. Localization of an Arg-Gly-Asp recognition site within an integrin adhesion receptor. Science. 1988 Oct 7;242(4875):91–93. doi: 10.1126/science.3262922. [DOI] [PubMed] [Google Scholar]
  8. D'Souza S. E., Ginsberg M. H., Matsueda G. R., Plow E. F. A discrete sequence in a platelet integrin is involved in ligand recognition. Nature. 1991 Mar 7;350(6313):66–68. doi: 10.1038/350066a0. [DOI] [PubMed] [Google Scholar]
  9. Du X. P., Plow E. F., Frelinger A. L., 3rd, O'Toole T. E., Loftus J. C., Ginsberg M. H. Ligands "activate" integrin alpha IIb beta 3 (platelet GPIIb-IIIa). Cell. 1991 May 3;65(3):409–416. doi: 10.1016/0092-8674(91)90458-b. [DOI] [PubMed] [Google Scholar]
  10. Farrell D. H., Thiagarajan P., Chung D. W., Davie E. W. Role of fibrinogen alpha and gamma chain sites in platelet aggregation. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10729–10732. doi: 10.1073/pnas.89.22.10729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Frojmovic M. M., Milton J. G., Gear A. L. Platelet aggregation measured in vitro by microscopic and electronic particle counting. Methods Enzymol. 1989;169:134–149. doi: 10.1016/0076-6879(89)69055-6. [DOI] [PubMed] [Google Scholar]
  12. Frojmovic M. M., Milton J. G. Physical, chemical and functional changes following platelet activation in normal and "giant" platelets. Blood Cells. 1983;9(2):359–382. [PubMed] [Google Scholar]
  13. Furlan M., Stieger J., Beck E. A. Exposure of platelet binding sites in von Willebrand factor by adsorption onto polystyrene latex particles. Biochim Biophys Acta. 1987 Apr 16;924(1):27–37. doi: 10.1016/0304-4165(87)90067-5. [DOI] [PubMed] [Google Scholar]
  14. Gawaz M. P., Loftus J. C., Bajt M. L., Frojmovic M. M., Plow E. F., Ginsberg M. H. Ligand bridging mediates integrin alpha IIb beta 3 (platelet GPIIB-IIIA) dependent homotypic and heterotypic cell-cell interactions. J Clin Invest. 1991 Oct;88(4):1128–1134. doi: 10.1172/JCI115412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Goldsmith H. L., Frojmovic M. M., Braovac S., McIntosh F., Wong T. Adenosine diphosphate-induced aggregation of human platelets in flow through tubes: III. Shear and extrinsic fibrinogen-dependent effects. Thromb Haemost. 1994 Jan;71(1):78–90. [PubMed] [Google Scholar]
  16. HIGUCHI W. I., OKADA R., STELTER G. A., LEMBERGER A. P. Kinetics of rapid aggregation in suspensions. Comparison of experiments with the Smoluchowski theory. J Pharm Sci. 1963 Jan;52:49–54. doi: 10.1002/jps.2600520110. [DOI] [PubMed] [Google Scholar]
  17. Hantgan R. R. A study of the kinetics and mechanism of ADP-triggered platelet aggregation. Biochim Biophys Acta. 1985 Jul 30;846(1):64–75. doi: 10.1016/0167-4889(85)90111-9. [DOI] [PubMed] [Google Scholar]
  18. Hawiger J., Kloczewiak M., Bednarek M. A., Timmons S. Platelet receptor recognition domains on the alpha chain of human fibrinogen: structure-function analysis. Biochemistry. 1989 Apr 4;28(7):2909–2914. doi: 10.1021/bi00433a024. [DOI] [PubMed] [Google Scholar]
  19. Huang P. Y., Hellums J. D. Aggregation and disaggregation kinetics of human blood platelets: Part II. Shear-induced platelet aggregation. Biophys J. 1993 Jul;65(1):344–353. doi: 10.1016/S0006-3495(93)81079-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ikeda Y., Handa M., Kawano K., Kamata T., Murata M., Araki Y., Anbo H., Kawai Y., Watanabe K., Itagaki I. The role of von Willebrand factor and fibrinogen in platelet aggregation under varying shear stress. J Clin Invest. 1991 Apr;87(4):1234–1240. doi: 10.1172/JCI115124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Klose H. J., Rieger H., Schmid-Schönbein H. A rheological method for the quantification of platelet aggregation (PA) in vitro and its kinetics under defined flow conditions. Thromb Res. 1975 Aug;7(2):261–272. doi: 10.1016/0049-3848(75)90185-1. [DOI] [PubMed] [Google Scholar]
  22. Kouns W. C., Kirchhofer D., Hadváry P., Edenhofer A., Weller T., Pfenninger G., Baumgartner H. R., Jennings L. K., Steiner B. Reversible conformational changes induced in glycoprotein IIb-IIIa by a potent and selective peptidomimetic inhibitor. Blood. 1992 Nov 15;80(10):2539–2547. [PubMed] [Google Scholar]
  23. Landolfi R., De Cristofaro R., De Candia E., Rocca B., Bizzi B. Effect of fibrinogen concentration on the velocity of platelet aggregation. Blood. 1991 Jul 15;78(2):377–381. [PubMed] [Google Scholar]
  24. Lee R. G., Kim S. W. Adsorption of proteins onto hydrophobic polymer surfaces: adsorption isotherms and kinetics. J Biomed Mater Res. 1974 Sep;8(5):251–259. doi: 10.1002/jbm.820080507. [DOI] [PubMed] [Google Scholar]
  25. Lumley P., Humphrey P. P. A method for quantitating platelet aggregation and analyzing drug-receptor interactions on platelets in whole blood in vitro. J Pharmacol Methods. 1981 Sep;6(2):153–166. doi: 10.1016/0160-5402(81)90038-3. [DOI] [PubMed] [Google Scholar]
  26. Marguerie G. A., Edgington T. S., Plow E. F. Interaction of fibrinogen with its platelet receptor as part of a multistep reaction in ADP-induced platelet aggregation. J Biol Chem. 1980 Jan 10;255(1):154–161. [PubMed] [Google Scholar]
  27. Niewiarowski S., Kornecki E., Budzynski A. Z., Morinelli T. A., Tuszynski G. P. Fibrinogen interaction with platelet receptors. Ann N Y Acad Sci. 1983 Jun 27;408:536–555. doi: 10.1111/j.1749-6632.1983.tb23271.x. [DOI] [PubMed] [Google Scholar]
  28. Pedvis L. G., Wong T., Frojmovic M. M. Differential inhibition of the platelet activation sequence: shape change, micro- and macro-aggregation, by a stable prostacyclin analogue (Iloprost). Thromb Haemost. 1988 Apr 8;59(2):323–328. [PubMed] [Google Scholar]
  29. Peerschke E. I. The platelet fibrinogen receptor. Semin Hematol. 1985 Oct;22(4):241–259. [PubMed] [Google Scholar]
  30. Peerschke E. I., Zucker M. B. Fibrinogen receptor exposure and aggregation of human blood platelets produced by ADP and chilling. Blood. 1981 Apr;57(4):663–670. [PubMed] [Google Scholar]
  31. Peterson D. M., Stathopoulos N. A., Giorgio T. D., Hellums J. D., Moake J. L. Shear-induced platelet aggregation requires von Willebrand factor and platelet membrane glycoproteins Ib and IIb-IIIa. Blood. 1987 Feb;69(2):625–628. [PubMed] [Google Scholar]
  32. Plow E. F., Ginsberg M. H. Cellular adhesion: GPIIb-IIIa as a prototypic adhesion receptor. Prog Hemost Thromb. 1989;9:117–156. [PubMed] [Google Scholar]
  33. Plow E. F., Marguerie G. A. Participation of ADP in the binding of fibrinogen to thrombin-stimulated platelets. Blood. 1980 Sep;56(3):553–555. [PubMed] [Google Scholar]
  34. Plow E. F., Marguerie G. Inhibition of fibrinogen binding to human platelets by the tetrapeptide glycyl-L-prolyl-L-arginyl-L-proline. Proc Natl Acad Sci U S A. 1982 Jun;79(12):3711–3715. doi: 10.1073/pnas.79.12.3711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Plow E. F., Srouji A. H., Meyer D., Marguerie G., Ginsberg M. H. Evidence that three adhesive proteins interact with a common recognition site on activated platelets. J Biol Chem. 1984 May 10;259(9):5388–5391. [PubMed] [Google Scholar]
  36. Roth G. J. Platelets and blood vessels: the adhesion event. Immunol Today. 1992 Mar;13(3):100–105. doi: 10.1016/0167-5699(92)90150-6. [DOI] [PubMed] [Google Scholar]
  37. Shattil S. J., Hoxie J. A., Cunningham M., Brass L. F. Changes in the platelet membrane glycoprotein IIb.IIIa complex during platelet activation. J Biol Chem. 1985 Sep 15;260(20):11107–11114. [PubMed] [Google Scholar]
  38. Tang S. S., Frojmovic M. M. The effects of pCO2 and pH on platelet shape change and aggregation for human and rabbit platelet-rich plasma. Thromb Res. 1977 Jan;10(1):135–145. doi: 10.1016/0049-3848(77)90086-x. [DOI] [PubMed] [Google Scholar]
  39. Timmons S., Bednarek M. A., Kloczewiak M., Hawiger J. Antiplatelet "hybrid" peptides analogous to receptor recognition domains on gamma and alpha chains of human fibrinogen. Biochemistry. 1989 Apr 4;28(7):2919–2923. doi: 10.1021/bi00433a026. [DOI] [PubMed] [Google Scholar]
  40. Ugarova T. P., Budzynski A. Z., Shattil S. J., Ruggeri Z. M., Ginsberg M. H., Plow E. F. Conformational changes in fibrinogen elicited by its interaction with platelet membrane glycoprotein GPIIb-IIIa. J Biol Chem. 1993 Oct 5;268(28):21080–21087. [PubMed] [Google Scholar]
  41. Warkentin T. E., Powling M. J., Hardisty R. M. Measurement of fibrinogen binding to platelets in whole blood by flow cytometry: a micromethod for the detection of platelet activation. Br J Haematol. 1990 Nov;76(3):387–394. doi: 10.1111/j.1365-2141.1990.tb06373.x. [DOI] [PubMed] [Google Scholar]
  42. Zamarron C., Ginsberg M. H., Plow E. F. A receptor-induced binding site in fibrinogen elicited by its interaction with platelet membrane glycoprotein IIb-IIIa. J Biol Chem. 1991 Aug 25;266(24):16193–16199. [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES