Abstract
1. In three healthy individuals, the first breath of cycle ergometer exercise was characterized by increases of minute ventilation (VE) and pulmonary capillary CO2 output (VCO2), with little change of end-tidal PCO2, suggesting a concomitant increase of pulmonary blood flow (Q) and preservation of V/Q status. Functional residual capacity fell, depleting lung gas stores of O2 and CO2. 2. The following hypothesis purporting to account for the initiation of exercise hyperpnoea was examined (Filley, 1976): (a) assuming pulmonary capillary plasma to remain unexposed to carbonic anhydrase, its slow alkalinization consequent upon CO2 exchange causes a more acid plasma to enter the pulmonary veins if Q increases abruptly, as at exercise onset; (b) the fall of pulmonary venous plasma pH stimulates an intrapulmonary chemoreflux to elicit a proportionate hyperpnoea, so preserving arterial isocapnia; (c) the initial hyperpnoea should therefore be abolished if pulmonary capillary VCO2 is suppressed at exercise onset, as the absence of pulmonary capillary plasma alkalinization should sever the postulated intrapulmonary humoral link between Q and VE. 3. In the present study, while abrupt CO2 inhalation (approximately 6% in air) at exercise onset abolished pulmonary capillary VCO2 during the first breath of exercise, the initial hyperpnoea was unaffected. This observation argues against the hypothesis that exercise hyperpnoea is initiated by an intrapulmonary chemoreflex which detects perfusion-related changes in pulmonary venous plasma pH.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bartoli A., Cross B. A., Guz A., Jain S. K., Noble M. I., Trenchard D. W. The effect of carbon dioxide in the airways and alveoli on ventilation; a vagal reflex studied in the dog. J Physiol. 1974 Jul;240(1):91–109. doi: 10.1113/jphysiol.1974.sp010601. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CRAIG F. N., CUMMINGS E. G. Breathing in brief exercise. J Appl Physiol. 1960 Jul;15:583–588. doi: 10.1152/jappl.1960.15.4.583. [DOI] [PubMed] [Google Scholar]
- Crandall E. D., Bidani A., Forster R. E. Postcapillary changes in blood pH in vivo during carbonic anhydrase inhibition. J Appl Physiol Respir Environ Exerc Physiol. 1977 Oct;43(4):582–590. doi: 10.1152/jappl.1977.43.4.582. [DOI] [PubMed] [Google Scholar]
- Crandall E. D., O'Brasky J. E. Direct evidence of participation of rat lung carbonic anhydrase in CO2 reactions. J Clin Invest. 1978 Sep;62(3):618–622. doi: 10.1172/JCI109168. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cunningham D. J., Drysdale D. B., Gardner W. N., Jensen J. I., Petersen E. S., Whipp B. J. Very small, very short-latency changes in human breathing induced by step changes of alveolar gas composition. J Physiol. 1977 Apr;266(2):411–421. doi: 10.1113/jphysiol.1977.sp011774. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Edwards R. H., Denison D. M., Jones G., Davies C. T., Campbell E. J. Changes in mixed venous gas tensions at start of exercise in man. J Appl Physiol. 1972 Feb;32(2):165–169. doi: 10.1152/jappl.1972.32.2.165. [DOI] [PubMed] [Google Scholar]
- Effros R. M., Chang R. S., Silverman P. Acceleration of plasma bicarbonate conversion to carbon dioxide by pulmonary carbonic anhydrase. Science. 1978 Jan 27;199(4327):427–429. doi: 10.1126/science.413195. [DOI] [PubMed] [Google Scholar]
- Filley G. F., Hale R. C., Kratochvil J., Olson D. E. The hyperpnea of exercise and chemical disequilibria. Chest. 1978 Feb;73(2 Suppl):267–270. doi: 10.1378/chest.73.2_supplement.267. [DOI] [PubMed] [Google Scholar]
- Forster R. E., Crandall E. D. Time course of exchanges between red cells and extracellular fluid during CO2 uptake. J Appl Physiol. 1975 Apr;38(4):710–718. doi: 10.1152/jappl.1975.38.4.710. [DOI] [PubMed] [Google Scholar]
- Goodwin G. M., McCloskey D. I., Mitchell J. H. Cardiovascular and respiratory responses to changes in central command during isometric exercise at constant muscle tension. J Physiol. 1972 Oct;226(1):173–190. doi: 10.1113/jphysiol.1972.sp009979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hill E. P., Power G. G., Gilbert R. D. Rate of pH changes in blood plasma in vitro and in vivo. J Appl Physiol Respir Environ Exerc Physiol. 1977 Jun;42(6):928–934. doi: 10.1152/jappl.1977.42.6.928. [DOI] [PubMed] [Google Scholar]
- Hill E. P., Power G. G., Longo L. D. Mathematical simulation of pulmonary O 2 and CO 2 exchange. Am J Physiol. 1973 Apr;224(4):904–917. doi: 10.1152/ajplegacy.1973.224.4.904. [DOI] [PubMed] [Google Scholar]
- Jensen J. I., Vejby-Christensen H., Petersen E. S. Ventilatory response to work initiated at various times during the respiratory cycle. J Appl Physiol. 1972 Dec;33(6):744–750. doi: 10.1152/jappl.1972.33.6.744. [DOI] [PubMed] [Google Scholar]
- Krogh A., Lindhard J. The regulation of respiration and circulation during the initial stages of muscular work. J Physiol. 1913 Oct 17;47(1-2):112–136. doi: 10.1113/jphysiol.1913.sp001616. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maren T. H. Carbonic anhydrase: chemistry, physiology, and inhibition. Physiol Rev. 1967 Oct;47(4):595–781. doi: 10.1152/physrev.1967.47.4.595. [DOI] [PubMed] [Google Scholar]
- McCloskey D. I., Mitchell J. H. Reflex cardiovascular and respiratory responses originating in exercising muscle. J Physiol. 1972 Jul;224(1):173–186. doi: 10.1113/jphysiol.1972.sp009887. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paulev P. E. Cardiac rate and ventilatory volume rate reactions to a muscle contraction in man. J Appl Physiol. 1973 May;34(5):578–583. doi: 10.1152/jappl.1973.34.5.578. [DOI] [PubMed] [Google Scholar]
- Pearce D. H., Milhorn H. T., Jr Dynamic and steady-state respiratory responses to bicycle exercise. J Appl Physiol Respir Environ Exerc Physiol. 1977 Jun;42(6):959–967. doi: 10.1152/jappl.1977.42.6.959. [DOI] [PubMed] [Google Scholar]
- Ponte J., Purves M. J. Carbon dioxide and venous return and their interaction as stimuli to ventilation in the cat. J Physiol. 1978 Jan;274:455–475. doi: 10.1113/jphysiol.1978.sp012160. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raynaud J., Bernal H., Bourdarias J. P., David P., Durand J. Oxygen delivery and oxygen return to the lungs at onset of exercise in man. J Appl Physiol. 1973 Aug;35(2):259–262. doi: 10.1152/jappl.1973.35.2.259. [DOI] [PubMed] [Google Scholar]
- Senapati J. M. Effect of stimulation of muscle afferents on ventilation of dogs. J Appl Physiol. 1966 Jan;21(1):242–246. doi: 10.1152/jappl.1966.21.1.242. [DOI] [PubMed] [Google Scholar]
- Ward S. A., Drysdale D. B., Cunningham D. J., Petersen E. S. Inspiratory-expiratory responses to alternate-breath oscillation of PACO2 and PAO2. Respir Physiol. 1979 Apr;36(3):311–325. doi: 10.1016/0034-5687(79)90044-6. [DOI] [PubMed] [Google Scholar]
- Wasserman K., Whipp B. J., Casaburi R., Beaver W. L. Carbon dioxide flow and exercise hyperpnea. Cause and effect. Am Rev Respir Dis. 1977 Jun;115(6 Pt 2):225–237. doi: 10.1164/arrd.1977.115.S.225. [DOI] [PubMed] [Google Scholar]
- Wasserman K., Whipp B. J., Castagna J. Cardiodynamic hyperpnea: hyperpnea secondary to cardiac output increase. J Appl Physiol. 1974 Apr;36(4):457–464. doi: 10.1152/jappl.1974.36.4.457. [DOI] [PubMed] [Google Scholar]