Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1979 Nov;296:343–355. doi: 10.1113/jphysiol.1979.sp013009

Effect of adenosine triphosphate and some derivatives on cerebral blood flow and metabolism.

T Forrester, A M Harper, E T MacKenzie, E M Thomson
PMCID: PMC1279082  PMID: 119042

Abstract

1. Responses of cerebral blood vessels to peri- and intravascular doses of ATP (adenosine triphosphate) and some derivatives were studied in cat and baboon. 2. Perivascular application of ATP to cat pial arterioles gave a threshold dilatory effect at a concentration of 10(-11) M. This figure is comparable to the amount of ATP calculated to be released from electrically stimulated brain slices. 3. It is concluded that adenine nucleotides have a major role to play in the local control of cerebral blood flow. 4. Intracarotid injection of ATP showed a calculated threshold effect at 4 x 10(8) M in the cat and 4 x 10(-9) M in the baboon. 5. The threshold response of the vasculature to intracarotid adenosine lay between 4 x 10(-7) M and 4 x 10(-6) M in the baboon. Little effect was produced with AMP, pyrophosphate and inorganic phosphate. 6. Intracarotid ATP increased the oxygen consumption of the baboon brain parenchyma. This effect was attributed in part to an elevation of the cellular cyclic AMP levels. 7. Osmotic disruption of the blood-brain barrier in baboon did not affect the vasodilatory or metabolic effect of intracarotid ATP. 8. It is postulated that circulating purine compounds mediate a form of metabolic communication inthe body. Also, release of purine compounds from active local nerves might influence cerebral blood flow.

Full text

PDF
343

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ABOOD L. G., KOKETSU K., MIYAMOTO S. Outflux of various phosphates during membrane depolarization of excitable tissues. Am J Physiol. 1962 Mar;202:469–474. doi: 10.1152/ajplegacy.1962.202.3.469. [DOI] [PubMed] [Google Scholar]
  2. Andersson R. Cyclic AMP as a mediator of the relaxing action of papaverine, nitroglycerine, diazoxide and hydralazine in intestinal and vascular smooth muscle. Acta Pharmacol Toxicol (Copenh) 1973;32(5):321–336. [PubMed] [Google Scholar]
  3. Boyd I. A., Forrester T. The release of adenosine triphosphate from frog skeletal muscle in vitro. J Physiol. 1968 Nov;199(1):115–135. doi: 10.1113/jphysiol.1968.sp008642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chaudry I. H., Gould M. K. Evidence for the uptake of ATP by rat soleus muscle in vitro. Biochim Biophys Acta. 1970;196(2):320–326. doi: 10.1016/0005-2736(70)90019-2. [DOI] [PubMed] [Google Scholar]
  5. Cusack N. J., Born G. V. Effects of photolysable 2-azido analogues of adenosine, AMP and ADP on human platelets. Proc R Soc Lond B Biol Sci. 1977 Jul 20;197(1129):515–520. doi: 10.1098/rspb.1977.0084. [DOI] [PubMed] [Google Scholar]
  6. Forrester T. An estimate of adenosine triphosphate release into the venous effluent from exercising human forearm muscle. J Physiol. 1972 Aug;224(3):611–628. doi: 10.1113/jphysiol.1972.sp009915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Forrester T., Harper A. M., MacKenzie E. T. Effects of intracarotid adenosine triphosphate infusions on cerebral blood flow and metabolism in the anaesthetized baboon. J Physiol. 1975 Aug;250(1):38P–39P. [PubMed] [Google Scholar]
  8. Forrester T., Lind A. R. Identification of adenosine triphosphate in human plasma and the concentration in the venous effluent of forearm muscles before, during and after sustained contractions. J Physiol. 1969 Oct;204(2):347–364. doi: 10.1113/jphysiol.1969.sp008917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Galun R., Margalit J. Some properties of the ATP receptors of Glossina austeni. Trans R Soc Trop Med Hyg. 1970;64(1):171–174. doi: 10.1016/0035-9203(70)90225-7. [DOI] [PubMed] [Google Scholar]
  10. Harper A. M., MacKenzie E. T. Effects of 5-hydroxytryptamine on pial arteriolar calibre in anaesthetized cats. J Physiol. 1977 Oct;271(3):735–746. doi: 10.1113/jphysiol.1977.sp012023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Harper M. A., MacKenzie E. T. Cerebral circulatory and metabolic effects of 5-hydroxytryptamine in anesthetized baboons. J Physiol. 1977 Oct;271(3):721–733. doi: 10.1113/jphysiol.1977.sp012022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hynie S., Krishna G., Brodie B. B. Theophylline as a tool in studies of the role of cyclic adenosine 3',5'-monophosphate in hormone-induced lipolysis. J Pharmacol Exp Ther. 1966 Jul;153(1):90–96. [PubMed] [Google Scholar]
  13. Ingvar D. H., Risberg J. Increase of regional cerebral blood flow during mental effort in normals and in patients with focal brain disorders. Exp Brain Res. 1967;3(3):195–211. doi: 10.1007/BF00235584. [DOI] [PubMed] [Google Scholar]
  14. Israël M., Lesbats B., Meunier F. M., Stinnakre J. Postsynaptic release of adenosine triphosphate induced by single impulse transmitter action. Proc R Soc Lond B Biol Sci. 1976 Jun 30;193(1113):461–468. doi: 10.1098/rspb.1976.0058. [DOI] [PubMed] [Google Scholar]
  15. Kakiuchi S., Rall T. W., McIlwain H. The effect of electrical stimulation upon the accumulation of adenosine 3',5'-phosphate in isolated cerebral tissue. J Neurochem. 1969 Apr;16(4):485–491. doi: 10.1111/j.1471-4159.1969.tb06847.x. [DOI] [PubMed] [Google Scholar]
  16. Kuroda Y., McIlwain H. Uptake and relase of (14C)adenine derivatives at beds of mammalian cortical synaptosomes in a superfusion system. J Neurochem. 1974 May;22(5):691–699. doi: 10.1111/j.1471-4159.1974.tb04282.x. [DOI] [PubMed] [Google Scholar]
  17. LASSEN N. A. Cerebral blood flow and oxygen consumption in man. Physiol Rev. 1959 Apr;39(2):183–238. doi: 10.1152/physrev.1959.39.2.183. [DOI] [PubMed] [Google Scholar]
  18. Lugnier C., Bertrand Y., Stoclet J. C. Cyclic nucleotide phosphodiesterase inhibition and vascular smooth muscle relaxation. Eur J Pharmacol. 1972 Jul;19(1):134–136. doi: 10.1016/0014-2999(72)90090-8. [DOI] [PubMed] [Google Scholar]
  19. MacKenzie E. T., McCulloch J., O'Kean M., Pickard J. D., Harper A. M. Cerebral circulation and norepinephrine: relevance of the blood-brain barrier. Am J Physiol. 1976 Aug;231(2):483–488. doi: 10.1152/ajplegacy.1976.231.2.483. [DOI] [PubMed] [Google Scholar]
  20. Mitchell B. K. ATP reception by the tsetse fly, Glossina morsitans West. Experientia. 1976 Feb 15;32(2):192–194. doi: 10.1007/BF01937759. [DOI] [PubMed] [Google Scholar]
  21. Parkinson P. I. Proceedings: The effect of graduated exercise on the concentration of adenine nucleotides in plasma. J Physiol. 1973 Oct;234(2):72P–74P. [PubMed] [Google Scholar]
  22. Pickard J. D., Durity F., Welsh F. A., Langfitt T. W., Harper A. M., MacKenzie E. T. Osmotic opening of the blood-brain barrier: value in pharmacological studies on the cerebral circulation. Brain Res. 1977 Feb 11;122(1):170–176. doi: 10.1016/0006-8993(77)90676-x. [DOI] [PubMed] [Google Scholar]
  23. Pritchard J. B., O'Connor N., Oliver J. M., Berlin R. D. Uptake and supply of purine compounds by the liver. Am J Physiol. 1975 Oct;229(4):967–972. doi: 10.1152/ajplegacy.1975.229.4.967. [DOI] [PubMed] [Google Scholar]
  24. Pull I., McIlwain H. Metabolism of ( 14 C)adenine and derivatives by cerebral tissues, superfused and electrically stimulated. Biochem J. 1972 Feb;126(4):965–973. doi: 10.1042/bj1260965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Roy C. S., Sherrington C. S. On the Regulation of the Blood-supply of the Brain. J Physiol. 1890 Jan;11(1-2):85–158.17. doi: 10.1113/jphysiol.1890.sp000321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. SOKOLOFF L., KETY S. S. Regulation of cerebral circulation. Physiol Rev Suppl. 1960 Apr;4:38–44. [PubMed] [Google Scholar]
  27. SOKOLOFF L. The action of drugs on the cerebral circulation. Pharmacol Rev. 1959 Mar;11(1):1–85. [PubMed] [Google Scholar]
  28. Sattin A., Rall T. W. The effect of adenosine and adenine nucleotides on the cyclic adenosine 3', 5'-phosphate content of guinea pig cerebral cortex slices. Mol Pharmacol. 1970 Jan;6(1):13–23. [PubMed] [Google Scholar]
  29. Schubert P., Kreutzberg G. W. (3H)adenosine, a tracer for neuronal connectivity. Brain Res. 1975 Feb 28;85(2):317–319. doi: 10.1016/0006-8993(75)90088-8. [DOI] [PubMed] [Google Scholar]
  30. Simionescu N., Siminoescu M., Palade G. E. Permeability of muscle capillaries to small heme-peptides. Evidence for the existence of patent transendothelial channels. J Cell Biol. 1975 Mar;64(3):586–607. doi: 10.1083/jcb.64.3.586. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Stromberg D. D., Fox J. R. Pressures in the pial arterial microcirculation of the cat during changes in systemic arterial blood pressure. Circ Res. 1972 Aug;31(2):229–239. doi: 10.1161/01.res.31.2.229. [DOI] [PubMed] [Google Scholar]
  32. Strubelt O. The influence of cyclic 3', 5'-AMP and theophylline on oxygen consumption of rats. Biochem Pharmacol. 1968 Jan;17(1):156–158. doi: 10.1016/0006-2952(68)90168-8. [DOI] [PubMed] [Google Scholar]
  33. WOLF M. M., BERNE R. M. Coronary vasodilator properties of purine and pyrimidine derivatives. Circ Res. 1956 May;4(3):343–348. doi: 10.1161/01.res.4.3.343. [DOI] [PubMed] [Google Scholar]
  34. Wahl M., Kuschinsky W., Bosse O., Thurau K. Dependency of pial arterial and arteriolar diameter on perivascular osmolarity in the cat. A microapplication study. Circ Res. 1973 Feb;32(2):162–169. doi: 10.1161/01.res.32.2.162. [DOI] [PubMed] [Google Scholar]
  35. Wilkinson J. H., Robinson J. M. Effect of ATP on release of intracellular enzymes from damaged cells. Nature. 1974 Jun 14;249(458):662–663. doi: 10.1038/249662a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES