Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1980 Jan;298:13–23. doi: 10.1113/jphysiol.1980.sp013063

Changes in partial pressure of carbon dioxide with time in carotid arterial blood in cats.

B Carruthers, J Ponte, M J Purves
PMCID: PMC1279098  PMID: 7359379

Abstract

1. A rapidly responding CO2 sensor and cuvette were placed in the carotid artery of anaesthetized cats and changes of PCO2 in post-pulmonary capillary blood were recorded when flow through the cuvette was suddenly stopped. 2. Under control conditions when the cats breathed spontaneously or were ventilated artificially, stop-flow caused Pa, CO2 to decay by 2--5 mmHg reaching a new equilibrium in 10--15 sec. The amount by which CO2 decayed was reduced by the inhalation of high O2. The decay was enhanced by hypoxia, the inhalation or infusion of CO2. It was reversed by the administration of acetazolamide: now with stop-flow, Pa, CO2 rose by 8--15 mmHg. 3. the mechanism of this decay is uncertain. We propose that it is due to the transfer of CO2 from plasma to red cells in post-capillary blood in response to the reduction of [H+]i as H+ binds to Hb following the oxylabile release of CO2 from Hb.

Full text

PDF
13

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bauer C. Reduction of the carbon dioxide affinity of human haemoglobin solutions by 2,3 diphosphoglycerate. Respir Physiol. 1970 Jul;10(1):10–19. doi: 10.1016/0034-5687(70)90022-8. [DOI] [PubMed] [Google Scholar]
  2. Bauer C., Schröder E. Carbamino compounds of haemoglobin in human adult and foetal blood. J Physiol. 1972 Dec;227(2):457–471. doi: 10.1113/jphysiol.1972.sp010042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bunn H. F. Differences in the interaction of 2,3-diphosphoglycerate with certain mammalian hemoglobins. Science. 1971 Jun 4;172(3987):1049–1050. doi: 10.1126/science.172.3987.1049. [DOI] [PubMed] [Google Scholar]
  4. CAIN S. M., OTIS A. B. Carbon dioxide transport in anesthetized dogs during inhibition of carbonic anhydrase. J Appl Physiol. 1961 Nov;16:1023–1028. doi: 10.1152/jappl.1961.16.6.1023. [DOI] [PubMed] [Google Scholar]
  5. Carruthers B., Ponte J., Purves M. J. Observations on the partial pressure of CO2 in carotid arterial blood in cats [proceedings]. J Physiol. 1978 Nov;284:166P–167P. [PubMed] [Google Scholar]
  6. Denison D., Edwards R. H., Jones G., Pope H. Estimates of the CO2 pressures in systemic arterial blood during rebreathing on exercise. Respir Physiol. 1971 Jan;11(2):186–196. doi: 10.1016/0034-5687(71)90023-5. [DOI] [PubMed] [Google Scholar]
  7. Effros R. M., Chang R. S., Silverman P. Acceleration of plasma bicarbonate conversion to carbon dioxide by pulmonary carbonic anhydrase. Science. 1978 Jan 27;199(4327):427–429. doi: 10.1126/science.413195. [DOI] [PubMed] [Google Scholar]
  8. Forster R. E., Crandall E. D. Time course of exchanges between red cells and extracellular fluid during CO2 uptake. J Appl Physiol. 1975 Apr;38(4):710–718. doi: 10.1152/jappl.1975.38.4.710. [DOI] [PubMed] [Google Scholar]
  9. Gurtner G. H., Song S. H., Farhi L. E. Alveolar to mixed venous PCO2 difference under conditions of no gas exchange. Respir Physiol. 1969 Aug;7(2):173–187. doi: 10.1016/0034-5687(69)90004-8. [DOI] [PubMed] [Google Scholar]
  10. Hill E. P., Power G. G., Gilbert R. D. Rate of pH changes in blood plasma in vitro and in vivo. J Appl Physiol Respir Environ Exerc Physiol. 1977 Jun;42(6):928–934. doi: 10.1152/jappl.1977.42.6.928. [DOI] [PubMed] [Google Scholar]
  11. Hill E. P., Power G. G., Longo L. D. Mathematical simulation of pulmonary O 2 and CO 2 exchange. Am J Physiol. 1973 Apr;224(4):904–917. doi: 10.1152/ajplegacy.1973.224.4.904. [DOI] [PubMed] [Google Scholar]
  12. Jennings D. B., Chen C. C. Negative arterial-mixed expired PC02 gradient during acute and chronic hypercapnia. J Appl Physiol. 1975 Mar;38(3):382–388. doi: 10.1152/jappl.1975.38.3.382. [DOI] [PubMed] [Google Scholar]
  13. Jones N. L., Campbell E. J., McHardy G. J., Higgs B. E., Clode M. The estimation of carbon dioxide pressure of mixed venous blood during exercise. Clin Sci. 1967 Apr;32(2):311–327. [PubMed] [Google Scholar]
  14. Klocke R. A. Mechanism and kinetics of the Haldane effect in human erythrocytes. J Appl Physiol. 1973 Nov;35(5):673–681. doi: 10.1152/jappl.1973.35.5.673. [DOI] [PubMed] [Google Scholar]
  15. Lewis G., Ponte J., Purves M. J. The time course of exchanges between red cells and extracellular fluid as CO2 is given up [proceedings]. J Physiol. 1978 Apr;277:30P–31P. [PubMed] [Google Scholar]
  16. Maren T. H. Carbonic anhydrase: chemistry, physiology, and inhibition. Physiol Rev. 1967 Oct;47(4):595–781. doi: 10.1152/physrev.1967.47.4.595. [DOI] [PubMed] [Google Scholar]
  17. Rossi-Bernardi L., Roughton F. J. The specific influence of carbon dioxide and carbamate compounds on the buffer power and Bohr effects in human haemoglobin solutions. J Physiol. 1967 Mar;189(1):1–29. doi: 10.1113/jphysiol.1967.sp008152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Siggaard-Andersen O., Salling N. Oxygen-linked hydrogen ion binding of human hemoglobin. Effects of carbon dioxide and 2,3-diphosphoglycerate. II. Studies on whole blood. Scand J Clin Lab Invest. 1971 Jun;27(4):361–366. doi: 10.3109/00365517109080231. [DOI] [PubMed] [Google Scholar]
  19. TOMASHEFSKI J. F., CHINN H. I., CLARK R. T., Jr Effect of carbonic anhydrase inhibition on respiration. Am J Physiol. 1954 Jun;177(3):451–454. doi: 10.1152/ajplegacy.1954.177.3.451. [DOI] [PubMed] [Google Scholar]
  20. Wasserman K., Whipp B. J., Castagna J. Cardiodynamic hyperpnea: hyperpnea secondary to cardiac output increase. J Appl Physiol. 1974 Apr;36(4):457–464. doi: 10.1152/jappl.1974.36.4.457. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES