Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1980 Jan;298:271–283. doi: 10.1113/jphysiol.1980.sp013080

Inhibition of transmitter release in bullfrog sympathetic ganglia induced by gamma-aminobutyric acid.

E Kato, K Kuba
PMCID: PMC1279115  PMID: 6244394

Abstract

1. Effects of gamma-aminobutyric acid (GABA) on the nicotinic synapses in bullfrog sympathetic ganglia were studied. 2. When GABA (100 microM--1 mM) was applied to the ganglion, the post-synaptic membrane depolarized slightly and transiently with a slight decrease in the membrane resistance. 3. GABA (5 microM--1 mM) decreased the amplitude of the fast excitatory post-synaptic potentials (fast e.p.s.p.) and its quantal content without a significant change in the quantal size, and these effects were seen even after the subsidence of the membrane depolarization. Picrotoxin (10 microM) did not antagonize the GABA action. 4. The sensitivity of the subsynaptic membrane to ACh was unaffected by GABA. On the other hand, the synaptic current underlying the fast e.p.s.p. was significantly depressed in the presence of GABA. 5. Neither the frequency nor the amplitude of the miniature e.p.s.p.s which occurred spontaneously were altered by GABA, in either normal or high K+ solutions. 6. The depressant action of GABA on the fast e.p.s.p. was not changed in a high K+ solution, while it was markedly decreased in a Cl- -deficient solution. 7. A small, but significant reduction in the amplitude of the presynaptic terminal spike recorded with a focal extracellular electrode was observed under the effect of GABA. 8. It was concluded that GABA inhibits synaptic transmission of bullfrog sympathetic ganglion mainly by decreasing the evoked release of transmitter and only partly by post-synpatic action. Possible mechanisms of the presynaptic action of GABA were discussed.

Full text

PDF
271

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams P. R., Brown D. A. Action of -aminobutyric acid (GABA) on rat sympathetic ganglion cells. Br J Pharmacol. 1973 Mar;47(3):639P–640P. [PMC free article] [PubMed] [Google Scholar]
  2. Adams P. R., Brown D. A. Actions of gamma-aminobutyric acid on sympathetic ganglion cells. J Physiol. 1975 Aug;250(1):85–120. doi: 10.1113/jphysiol.1975.sp011044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BLACKMAN J. G., GINSBORG B. L., RAY C. Spontaneous synaptic activity in sympathetic ganglion cells of the frog. J Physiol. 1963 Jul;167:389–401. doi: 10.1113/jphysiol.1963.sp007157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. DEL CASTILLO J., KATZ B. Quantal components of the end-plate potential. J Physiol. 1954 Jun 28;124(3):560–573. doi: 10.1113/jphysiol.1954.sp005129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. DUDEL J., KUFFLER S. W. Presynaptic inhibition at the crayfish neuromuscular junction. J Physiol. 1961 Mar;155:543–562. doi: 10.1113/jphysiol.1961.sp006646. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. FATT P., KATZ B. An analysis of the end-plate potential recorded with an intracellular electrode. J Physiol. 1951 Nov 28;115(3):320–370. doi: 10.1113/jphysiol.1951.sp004675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gallagher J. P., Higashi H., Nishi S. Characterization and ionic basis of GABA-induced depolarizations recorded in vitro from cat primary afferent neurones. J Physiol. 1978 Feb;275:263–282. doi: 10.1113/jphysiol.1978.sp012189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ginsborg B. L. On the presynaptic acetylcholine receptors in sympathetic ganglia of the frog. J Physiol. 1971 Jul;216(1):237–246. doi: 10.1113/jphysiol.1971.sp009521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hatt H., Smith D. O. Synaptic depression related to presynaptic axon conduction block. J Physiol. 1976 Jul;259(2):367–393. doi: 10.1113/jphysiol.1976.sp011471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. KATZ B., MILEDI R. PROPAGATION OF ELECTRIC ACTIVITY IN MOTOR NERVE TERMINALS. Proc R Soc Lond B Biol Sci. 1965 Feb 16;161:453–482. doi: 10.1098/rspb.1965.0015. [DOI] [PubMed] [Google Scholar]
  11. Kato E., Kuba K., Koketsu K. Presynaptic inhibition by gamma-aminobutyric acid in bullfrog sympathetic ganglion cells. Brain Res. 1978 Sep 22;153(2):398–402. doi: 10.1016/0006-8993(78)90422-5. [DOI] [PubMed] [Google Scholar]
  12. Katz B., Miledi R. The release of acetylcholine from nerve endings by graded electric pulses. Proc R Soc Lond B Biol Sci. 1967 Jan 31;167(1006):23–38. doi: 10.1098/rspb.1967.0011. [DOI] [PubMed] [Google Scholar]
  13. Kawai N., Niwa A. Hyperpolarization of the excitatory nerve terminals by inhibitory nerve stimulation in lobser. Brain Res. 1977 Dec 2;137(2):365–368. doi: 10.1016/0006-8993(77)90348-1. [DOI] [PubMed] [Google Scholar]
  14. Koketsu K., Nishi S. Cholinergic receptors at sympathetic preganglionic nerve terminals. J Physiol. 1968 May;196(2):293–310. doi: 10.1113/jphysiol.1968.sp008508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Koketsu K., Shoji T., Yamamoto K. Effects of GABA on presynaptic nerve terminals in bullfrog (Rana catesbiana) sympathetic ganglia. Experientia. 1974 Apr 15;30(4):382–383. doi: 10.1007/BF01921677. [DOI] [PubMed] [Google Scholar]
  16. Kuba K., Nishi S. Characteristics of fast excitatory postsynaptic current in bullfrog sympathetic ganglion cells. Effects of membrane potential, temperature and Ca ions. Pflugers Arch. 1979 Jan 31;378(3):205–212. doi: 10.1007/BF00592737. [DOI] [PubMed] [Google Scholar]
  17. LILEY A. W. The effects of presynaptic polarization on the spontaneous activity at the mammalian neuromuscular junction. J Physiol. 1956 Nov 28;134(2):427–443. doi: 10.1113/jphysiol.1956.sp005655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Llinás R., Steinberg I. Z., Walton K. Presynaptic calcium currents and their relation to synaptic transmission: voltage clamp study in squid giant synapse and theoretical model for the calcium gate. Proc Natl Acad Sci U S A. 1976 Aug;73(8):2918–2922. doi: 10.1073/pnas.73.8.2918. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. NARAHASHI T., MOORE J. W., SCOTT W. R. TETRODOTOXIN BLOCKAGE OF SODIUM CONDUCTANCE INCREASE IN LOBSTER GIANT AXONS. J Gen Physiol. 1964 May;47:965–974. doi: 10.1085/jgp.47.5.965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. NISHI S., KOKETSU K. Electrical properties and activities of single sympathetic neurons in frogs. J Cell Comp Physiol. 1960 Feb;55:15–30. doi: 10.1002/jcp.1030550104. [DOI] [PubMed] [Google Scholar]
  21. Nagata Y., Yokoi Y., Tsukada Y. Studies on free amino acid metabolism in excised cervical sympathetic ganglia from the rat. J Neurochem. 1966 Dec;13(12):1421–1431. doi: 10.1111/j.1471-4159.1966.tb04303.x. [DOI] [PubMed] [Google Scholar]
  22. Nishi S., Minota S., Karczmar A. G. Primary afferent neurones: the ionic mechanism of GABA-mediated depolarization. Neuropharmacology. 1974 Mar;13(3):215–219. doi: 10.1016/0028-3908(74)90110-5. [DOI] [PubMed] [Google Scholar]
  23. Schmidt R. F. Presynaptic inhibition in the vertebrate central nervous system. Ergeb Physiol. 1971;63:20–101. doi: 10.1007/BFb0047741. [DOI] [PubMed] [Google Scholar]
  24. TAKEUCHI A., TAKEUCHI N. Electrical changes in pre- and postsynaptic axons of the giant synapse of Loligo. J Gen Physiol. 1962 Jul;45:1181–1193. doi: 10.1085/jgp.45.6.1181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Takeuchi A., Takeuchi N. On the permeability of the presynaptic terminal of the crayfish neuromuscular junction during synaptic inhibition and the action of gamma-aminobutyric acid. J Physiol. 1966 Mar;183(2):433–449. doi: 10.1113/jphysiol.1966.sp007875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. de Groat W. C. The actions of gamma-aminobutyric acid and related amino acids on mammalian autonomic ganglia. J Pharmacol Exp Ther. 1970 Apr;172(2):384–396. [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES