Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1980 Jan;298:285–299. doi: 10.1113/jphysiol.1980.sp013081

Innervation of sympathetic neurones in the guinea-pig thoracic chain.

J W Lichtman, D Purves, J W Yip
PMCID: PMC1279116  PMID: 7359403

Abstract

We have investigated the organization of the guinea-pig thoracic chain by studying the innervation of the stellate and fifth thoracic sympathetic ganglia with intracellular recording. 1. These ganglia receive preganglionic innervation from different but overlapping sets of spinal cord segments: the stellate ganglion is innervated by preganglionic axons from spinal segments more rostral than those supplying the fifth thoracic ganglion, but somewhat more caudal than those innervating the superior cervical ganglion. 2. Individual thoracic ganglion cells are innervated by only some of the spinal segments that supply each ganglion as a whole. In general, the subset of spinal segments innervating a ganglion cell is contiguous; one of these segments provides the strongest innervation, with progressively weaker innervation arising from spinal levels adjacent to the dominant one. This selective pattern of innervation is similar to that in the superior cervical ganglion (Njå & Purves, 1977 a). 3. Preganglionic axons frequently innervate neurones in more than one ganglion. 4. Although neurones innervated by the same spinal cord segments are found in both the stellate and the fifth thoracic ganglion, as well as in the superior cervical, the number of ganglion cells receiving innervation from particular spinal segments is different in each ganglion. Moreover, neurones dominated by the same segment but located in different ganglia receive somewhat different average innervation from adjacent segments as a function of the ganglion in which they reside. 5. These results indicate that neurones in the thoracic chain ganglia, as those in the superior cervical ganglion, are selectively innervated by particular spinal cord segments. We suggest that the different average innervation of sympathetic ganglia reflects at least two related factors: the selective qualities of their constituent neurones, and the availability of different preganglionic axons to each ganglion.

Full text

PDF
285

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blackman J. G., Purves R. D. Intracellular recordings from ganglia of the thoracic sympathetic chain of the guinea-pig. J Physiol. 1969 Jul;203(1):173–198. doi: 10.1113/jphysiol.1969.sp008858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bowers C. W., Zigmond R. E. Localization of neurons in the rat superior cervical ganglion that project into different postganglionic trunks. J Comp Neurol. 1979 May 15;185(2):381–391. doi: 10.1002/cne.901850211. [DOI] [PubMed] [Google Scholar]
  3. Langley J. N. On axon-reflexes in the pre-ganglionic fibres of the sympathetic system. J Physiol. 1900 Aug 29;25(5):364–398. doi: 10.1113/jphysiol.1900.sp000803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Langley J. N. The Arrangement of the Sympathetic Nervous System, based chiefly on Observations upon Pilo-motor Nerves. J Physiol. 1893 Sep;15(3):176–248.21. doi: 10.1113/jphysiol.1893.sp000470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Lichtman J. W., Purves D., Yip J. W. On the purpose of selective innervation of guinea-pig superior cervical ganglion cells. J Physiol. 1979 Jul;292:69–84. doi: 10.1113/jphysiol.1979.sp012839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Lichtman J. W. The reorganization of synaptic connexions in the rat submandibular ganglion during post-natal development. J Physiol. 1977 Dec;273(1):155–177. doi: 10.1113/jphysiol.1977.sp012087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. MURRAY J. G., THOMPSON J. W. The occurrence and function of collateral sprouting in the sympathetic nervous system of the cat. J Physiol. 1957 Jan 23;135(1):133–162. doi: 10.1113/jphysiol.1957.sp005700. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Nja A., Purves D. Re-innervation of guinea-pig superior cervical ganglion cells by preganglionic fibres arising from different levels of the spinal cord. J Physiol. 1977 Nov;272(3):633–651. doi: 10.1113/jphysiol.1977.sp012064. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Njå A., Purves D. Specific innervation of guinea-pig superior cervical ganglion cells by preganglionic fibres arising from different levels of the spinal cord. J Physiol. 1977 Jan;264(2):565–583. doi: 10.1113/jphysiol.1977.sp011683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Njå A., Purves D. Specificity of initial synaptic contacts made on guinea-pig superior cervical ganglion cells during regeneration of the cervical sympathetic trunk. J Physiol. 1978 Aug;281:45–62. doi: 10.1113/jphysiol.1978.sp012408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Purves D. Functional and structural changes in mammalian sympathetic neurones following interruption of their axons. J Physiol. 1975 Nov;252(2):429–463. doi: 10.1113/jphysiol.1975.sp011151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Purves D., Lichtman J. W. Formation and maintenance of synaptic connections in autonomic ganglia. Physiol Rev. 1978 Oct;58(4):821–862. doi: 10.1152/physrev.1978.58.4.821. [DOI] [PubMed] [Google Scholar]
  13. Purves D., Thompson W. The effects of post-ganglionic axotomy on selective synaptic connexions in the superior cervical ganglion of the guinea-pig. J Physiol. 1979 Dec;297(0):95–110. doi: 10.1113/jphysiol.1979.sp013029. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES