Abstract
1. A method is described for the measurement of colonic mucosal-submucosal blood flow in man, by studying surgically created colostomies. 2. A local radioisotopic clearance technique utilizing a stable preparation of [125I]4-iodoantipyrine is employed. The indicator is injected directly into the colostomy under study and its gamma emission is recorded by a scintillation detector. 3. A radioautographic study was carried out at laparotomy in humans to facilitate the interpretation of the recorded washout curves. This demonstrated that the tracer was cleared from both the mucosa and submucosa throughout the period of study. 4. Mucosal-submucosal blood flow was calculated according to Kety (1949) from the monoexponential clearance curves obtained, and amounted to 31.7 +/- 11 ml./min. 100 g (S.D. of an observation, n = 30). 5. The results from two consecutive measurements in seventeen patients showed that the mean change between first and second readings was not significant (t test). In addition the between-patient variation (12.2) was significantly greater than the within-patient variation (2.6) for consecutive recordings (F test; P less than 0.01). 6. The within-patient between-days variation (12.9; n = 10) was found to be similar to the between-patient variation. 7. It is concluded that the technique permits measurement of local colonic blood flow in man and by consecutive measurements, it may be used to evaluate local changes in blood flow following reflex or pharmacological stimulation.
Full text
PDF












Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andersen A. M., Ladefoged J. Partition coefficient of 133-xenon between various tissues and blood in vivo. Scand J Clin Lab Invest. 1967;19(1):72–78. doi: 10.3109/00365516709093483. [DOI] [PubMed] [Google Scholar]
- Athanasoulis C. A., Waltman A. C., van Urk H., Baum S. Blood flow measurement with the spillover technique during intra-arterial drug infusions. Radiology. 1973 Dec;109(3):717–719. doi: 10.1148/109.3.717. [DOI] [PubMed] [Google Scholar]
- Bacaner M. B. Quantitative measurement of regional colon blood flow in the normal and pathological human bowel. Gastroenterology. 1966 Nov;51(5):764–777. [PubMed] [Google Scholar]
- CONN H. L., Jr Equilibrium distribution of radioxenon in tissue: xenon-hemoglobin association curve. J Appl Physiol. 1961 Nov;16:1065–1070. doi: 10.1152/jappl.1961.16.6.1065. [DOI] [PubMed] [Google Scholar]
- Dicker S. E., Greenbaum A. L. Changes in renal cyclic nucleotide content as a possible trigger to the initiation of compensatory renal hypertrophy in rats. J Physiol. 1977 Oct;271(2):505–514. doi: 10.1113/jphysiol.1977.sp012011. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dicker S. E., Greenbaum A. L., Morris C. A. Compensatory renal hypertrophy in hypophysectomized rats. J Physiol. 1977 Dec;273(1):241–253. doi: 10.1113/jphysiol.1977.sp012091. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dicker S. E. Inhibition of compensatory renal growth in rats. J Physiol. 1972 Sep;225(3):577–588. doi: 10.1113/jphysiol.1972.sp009957. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dicker S. E., Morris C. A. Investigation of a substance of renal origin which inhibits the growth of renal cortex explant in vitro. J Embryol Exp Morphol. 1974 Jun;31(3):655–665. [PubMed] [Google Scholar]
- Dicker S. E., Morris C. A., Shipolini R. Regulation of compensatory kidney hypertrophy by its own products. J Physiol. 1977 Aug;269(3):687–705. doi: 10.1113/jphysiol.1977.sp011923. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dicker S. E., Shirley D. G. Compensatory renal growth after unilateral nephrectomy in the new-born rat. J Physiol. 1973 Jan;228(1):193–202. doi: 10.1113/jphysiol.1973.sp010081. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dicker S. E., Shirley D. G. Mechanism of compensatory renal hypertrophy. J Physiol. 1971 Dec;219(3):507–523. doi: 10.1113/jphysiol.1971.sp009675. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Diezi J., Michoud-Hausel P., Nicolas-Buxcel N. Studies on possible mechanisms of early functional compensatory adaptation in the remaining kidney. Yale J Biol Med. 1978 May-Jun;51(3):265–270. [PMC free article] [PubMed] [Google Scholar]
- Dijkhuis C. M., van Urk H., Malamud D., Malt R. A. Rapid reversal of compensatory renal hypertrophy after withdrawal of the stimulus. Surgery. 1975 Oct;78(4):476–480. [PubMed] [Google Scholar]
- Dirks J. H., Wong N. L. Acute functional adaptation to nephron loss: micropuncture studies. Yale J Biol Med. 1978 May-Jun;51(3):255–263. [PMC free article] [PubMed] [Google Scholar]
- GRAYSON J. The measurement of intestinal blood flow in man. J Physiol. 1951 Aug;114(4):419–434. doi: 10.1113/jphysiol.1951.sp004633. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Greenway C. V., Murthy V. S. Effects of vasopressin and isoprenaline infusions on the distribution of blod flow in the intestine; criteria for the validity of microsphere studies. Br J Pharmacol. 1972 Oct;46(2):117–188. doi: 10.1111/j.1476-5381.1972.tb06863.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hill J. M., Ab G., Malt R. A. Ribonucleic acid labelling and nucleotide pools during compensatory renal hypertrophy. Biochem J. 1974 Dec;144(3):447–453. doi: 10.1042/bj1440447. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hope A., Clausen G., Aukland K. Intrarenal distribution of blood flow in rats determined by 125I-iodoantipyrine uptake. Circ Res. 1976 Sep;39(3):362–370. doi: 10.1161/01.res.39.3.362. [DOI] [PubMed] [Google Scholar]
- Hulten L., Jodal M., Lindhagen J., Lundgren O. Colonic blood flow in cat and man as analyzed by an inert gas washout technique. Gastroenterology. 1976 Jan;70(1):36–44. [PubMed] [Google Scholar]
- Katz A. I. Renal function immediately after contralateral nephrectomy: relation to the mechanism of compensatory kidney growth. Yale J Biol Med. 1970 Dec;43(3):164–172. [PMC free article] [PubMed] [Google Scholar]
- Katz A. I., Toback F. G., Lindheimer M. D. Independence of onset of compensatory kidney growth from changes in renal function. Am J Physiol. 1976 Apr;230(4):1067–1071. doi: 10.1152/ajplegacy.1976.230.4.1067. [DOI] [PubMed] [Google Scholar]
- Katz A. I., Toback F. G., Lindheimer M. D. The role of renal "work" in compensatory kidney growth. Yale J Biol Med. 1978 May-Jun;51(3):331–337. [PMC free article] [PubMed] [Google Scholar]
- Kurnick N. B., Lindsay P. A. Compensatory renal hypertrophy in parabiotic mice. Lab Invest. 1968 Jul;19(1):45–48. [PubMed] [Google Scholar]
- LOWENSTEIN L. M., STERN A. SERUM FACTOR IN RENAL COMPENSATORY HYPERPLASIA. Science. 1963 Dec 13;142(3598):1479–1480. doi: 10.1126/science.142.3598.1479. [DOI] [PubMed] [Google Scholar]
- Lanciault G., Jacobson E. D. The gastrointestinal circulation. Gastroenterology. 1976 Nov;71(5):851–873. [PubMed] [Google Scholar]
- Lyons H. J., Evan A. P., McLaren L. C., Solomon S. In vitro evidence for a renotrophic factor in renal compensatory hypertrophy. Nephron. 1974;13(3):198–211. doi: 10.1159/000180394. [DOI] [PubMed] [Google Scholar]
- Malt R. A. Macromolecular metabolism in compensatory renal hypertrophy. Yale J Biol Med. 1978 May-Jun;51(3):419–428. [PMC free article] [PubMed] [Google Scholar]
- Melvin W. T., Kumar A., Malt R. A. Conservation of ribosomal RNA during compensatory renal hypertrophy. A major mechanism in RNA accretion. J Cell Biol. 1976 Jun;69(3):548–556. doi: 10.1083/jcb.69.3.548. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morris G. C. Growth of rats' kidneys after unilateral uretero-caval anastomosis. J Physiol. 1976 Jul;258(3):755–767. doi: 10.1113/jphysiol.1976.sp011444. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Munck O., Andersen A. M. Decomposition of iodine-labelled antipyrine. Scand J Clin Lab Invest. 1967;19(3):256–258. doi: 10.3109/00365516709090633. [DOI] [PubMed] [Google Scholar]
- Norryd C., Dencker H., Lunderquist A., Olin T. Superior mesenteric blood flow in man studied with a dye-dilution technique. Acta Chir Scand. 1975;141(2):109–118. [PubMed] [Google Scholar]
- Obertop H., Malt R. A. Lost mass and excretion as stimuli to parabiotic compensatory renal hypertrophy. Am J Physiol. 1977 May;232(5):F405–F408. doi: 10.1152/ajprenal.1977.232.5.F405. [DOI] [PubMed] [Google Scholar]
- Preuss H. G., Terryi E. F., Keller A. I. Renotropic factor(s) in plasma from uninephrectomized rats. Nephron. 1970;7(5):459–470. doi: 10.1159/000179845. [DOI] [PubMed] [Google Scholar]
- Ross J. S., Bucher N. L., Malt R. A. Compensatory renal hypertrophy in eviscerated rats. Cancer Res. 1974 Mar;34(3):502–505. [PubMed] [Google Scholar]
- Schlondorff D., Weber H. Cyclic nucleotide metabolism in compensatory renal hypertrophy and neonatal kidney growth. Proc Natl Acad Sci U S A. 1976 Feb;73(2):524–528. doi: 10.1073/pnas.73.2.524. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schlondorff D., Weber H. Evidence for altered cyclic nucleotide metabolism during compensatory renal hypertrophy and neonatal kidney growth. Yale J Biol Med. 1978 May-Jun;51(3):387–392. [PMC free article] [PubMed] [Google Scholar]
- Shames D., Murphy J. J., Berkowitz H. Evidence for a humoral factor in unilaterally nephrectomized dogs stimulating renal growth in isolated canine kidneys. Surgery. 1976 May;79(5):573–576. [PubMed] [Google Scholar]
- Silber S., Malvin R. L. Compensatory and obligatory renal growth in rats. Am J Physiol. 1974 Jan;226(1):114–117. doi: 10.1152/ajplegacy.1974.226.1.114. [DOI] [PubMed] [Google Scholar]
- Svanvik J., Lundgren O. Gastrointestinal circulation. Int Rev Physiol. 1977;12:1–34. [PubMed] [Google Scholar]
- Van Vroonhoven T. J., Soler-Montesinos L., Malt R. A. Humoral regulation of renal mass. Surgery. 1972 Aug;72(2):300–305. [PubMed] [Google Scholar]
- Wilson S. E., Hiatt J., Winston M., Passaro E., Jr Intestinal blood flow. An evaluation by clearance of xenon Xe 133 from the canine jejunum. Arch Surg. 1975 Jul;110(7):797–801. doi: 10.1001/archsurg.1975.01360130029006. [DOI] [PubMed] [Google Scholar]