Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1980 Feb;299:409–424. doi: 10.1113/jphysiol.1980.sp013133

Paired-pulse and frequency facilitation in the CA1 region of the in vitro rat hippocampus

Robert Creager *, Thomas Dunwiddie , Gary Lynch *
PMCID: PMC1279233  PMID: 7381775

Abstract

1. Several types of facilitation of evoked synaptic responses were investigated in the CA1 region of the in vitro rat hippocampus. Homosynaptic paired-pulse facilitation and heterosynaptic frequency facilitation were characterized and found to be differentiable processes on the basis of several characteristics.

2. Paired-pulse facilitation, which occurs when the same input is stimulated twice in rapid succession, is manifested as an increase in both the extracellularly recorded population spike and the field e.p.s.p., and is specific to the set of afferents excited by the first impulse. Responses to other excitatory afferents show no facilitation by a heterosynaptic conditioning pulse.

3. At intervals less than 200 msec, the degree of facilitation produced by a preceding impulse appears to decline as a first order exponential function of time. Facilitation is increased by lowering calcium or raising magnesium concentrations in the bathing medium, with no apparent change in the time constant of the decay process.

4. The phenomenon that has sometimes been termed frequency facilitation, and which occurs during the early phase of repetitive stimulation, appears to be an extension of paired-pulse facilitation. It is seen as an increase in amplitude of both the e.p.s.p. and population spike in response to stimulation of homosynaptic inputs, can be predicted with fair accuracy by assuming that the residual paired-pulse facilitation produced by each impulse adds linearly with that from previous impulses, and is affected by calcium and magnesium ions in the same manner as is paired-pulse facilitation. These two types of facilitation, which apparently share a common mechanism, are termed synaptic or primary facilitation.

5. Another type of facilitation, which we suggest might more properly be called frequency facilitation, develops slowly during the course of repetitive stimulation. It is the result of an increase in cell firing in response to any excitatory input, either homo- or heterosynaptic, at time points at which the field e.p.s.p. is typically depressed.

6. Increases in the potassium concentration of the perfusion medium produce effects similar to those observed with frequency facilitation; stimulation-evoked increases in the extracellular concentration of this ion are hypothesized to underlie this type of generalized facilitation.

Full text

PDF
409

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANDERSEN P. Interhippocampal impulses. II. Apical dendritic activation of CAI neurons. Acta Physiol Scand. 1960 Mar 18;48:178–208. doi: 10.1111/j.1748-1716.1960.tb01858.x. [DOI] [PubMed] [Google Scholar]
  2. ANDERSEN P. Interhippocampal impulses. III. Basal dendritic activation of CA3 neurons. Acta Physiol Scand. 1960 Mar 18;48:209–230. doi: 10.1111/j.1748-1716.1960.tb01857.x. [DOI] [PubMed] [Google Scholar]
  3. Alger B. E., Teyler T. J. Long-term and short-term plasticity in the CA1, CA3, and dentate regions of the rat hippocampal slice. Brain Res. 1976 Jul 16;110(3):463–480. doi: 10.1016/0006-8993(76)90858-1. [DOI] [PubMed] [Google Scholar]
  4. Alger B. E., Teyler T. J. Potassium and short-term response plasticity in the hippocampal slice. Brain Res. 1978 Dec 22;159(1):239–242. doi: 10.1016/0006-8993(78)90127-0. [DOI] [PubMed] [Google Scholar]
  5. Andersen P., Bliss T. V., Skrede K. K. Unit analysis of hippocampal polulation spikes. Exp Brain Res. 1971;13(2):208–221. doi: 10.1007/BF00234086. [DOI] [PubMed] [Google Scholar]
  6. Andersen P., Holmqvist B., Voorhoeve P. E. Excitatory synapses on hippocampal apical dendrites activated by entorhinal stimulation. Acta Physiol Scand. 1966 Apr;66(4):461–472. doi: 10.1111/j.1748-1716.1966.tb03224.x. [DOI] [PubMed] [Google Scholar]
  7. Andersen P., Lomo T. Control of hippocampal output by afferent volley frequency. Prog Brain Res. 1967;27:400–412. doi: 10.1016/S0079-6123(08)63112-X. [DOI] [PubMed] [Google Scholar]
  8. Andersen P., Sundberg S. H., Sveen O., Wigström H. Specific long-lasting potentiation of synaptic transmission in hippocampal slices. Nature. 1977 Apr 21;266(5604):736–737. doi: 10.1038/266736a0. [DOI] [PubMed] [Google Scholar]
  9. Bliss T. V., Gardner-Medwin A. R. Long-lasting potentiation of synaptic transmission in the dentate area of the unanaestetized rabbit following stimulation of the perforant path. J Physiol. 1973 Jul;232(2):357–374. doi: 10.1113/jphysiol.1973.sp010274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Braun M., Schmidt R. F. Potential changes recorded from the frog motor nerve terminal during its activation. Pflugers Arch Gesamte Physiol Menschen Tiere. 1966;287(1):56–80. doi: 10.1007/BF00362454. [DOI] [PubMed] [Google Scholar]
  11. CURTIS D. R., ECCLES J. C. Synaptic action during and after repetitive stimulation. J Physiol. 1960 Feb;150:374–398. doi: 10.1113/jphysiol.1960.sp006393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dudek F. E., Deadwyler S. A., Cotman C. W., Lynch G. Intracellular responses from granule cell layer in slices of rat hippocampus: perforant path synapse. J Neurophysiol. 1976 Mar;39(2):384–393. doi: 10.1152/jn.1976.39.2.384. [DOI] [PubMed] [Google Scholar]
  13. Dunwiddie T. V., Lynch G. The relationship between extracellular calcium concentrations and the induction of hippocampal long-term potentiation. Brain Res. 1979 Jun 15;169(1):103–110. doi: 10.1016/0006-8993(79)90377-9. [DOI] [PubMed] [Google Scholar]
  14. Dunwiddie T., Lynch G. Long-term potentiation and depression of synaptic responses in the rat hippocampus: localization and frequency dependency. J Physiol. 1978 Mar;276:353–367. doi: 10.1113/jphysiol.1978.sp012239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. FUJITA Y., SAKATA H. Electrophysiological properties of CA1 and CA2 apical dendrites of rabbit hippocampus. J Neurophysiol. 1962 Mar;25:209–222. doi: 10.1152/jn.1962.25.2.209. [DOI] [PubMed] [Google Scholar]
  16. Fritz L. C., Gardner-Medwin A. R. The effect of synaptic activation on the extracellular potassium concentration in the hippocampal dentate area, in vitro. Brain Res. 1976 Aug 6;112(1):183–187. doi: 10.1016/0006-8993(76)90348-6. [DOI] [PubMed] [Google Scholar]
  17. GLOOR P., VERA C. L., SPERTI L. ELECTROPHYSIOLOGICAL STUDIES OF HIPPOCAMPAL NEURONS. 3. RESPONSES OF HIPPOCAMPAL NEURONS TO REPETITIVE PERFORANT PATH VOLLEYS. Electroencephalogr Clin Neurophysiol. 1964 Oct;17:353–370. doi: 10.1016/0013-4694(64)90158-0. [DOI] [PubMed] [Google Scholar]
  18. Gage P. W., Quastel D. M. Dual effect of potassium on transmitter release. Nature. 1965 May 8;206(984):625–626. doi: 10.1038/206625a0. [DOI] [PubMed] [Google Scholar]
  19. HUBBARD J. I. REPETITIVE STIMULATION AT THE MAMMALIAN NEUROMUSCULAR JUNCTION, AND THE MOBILIZATION OF TRANSMITTER. J Physiol. 1963 Dec;169:641–662. doi: 10.1113/jphysiol.1963.sp007286. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. JOB C., LUNDBERG A. On the significance of post- and pre-synaptic events for facilitation and inhibition in the sympathetic ganglion of the cat. Acta Physiol Scand. 1953 Mar 31;28(1):14–28. doi: 10.1111/j.1748-1716.1953.tb00956.x. [DOI] [PubMed] [Google Scholar]
  21. KATZ B., MILEDI R. THE EFFECT OF CALCIUM ON ACETYLCHOLINE RELEASE FROM MOTOR NERVE TERMINALS. Proc R Soc Lond B Biol Sci. 1965 Feb 16;161:496–503. doi: 10.1098/rspb.1965.0017. [DOI] [PubMed] [Google Scholar]
  22. Katz B., Miledi R. The role of calcium in neuromuscular facilitation. J Physiol. 1968 Mar;195(2):481–492. doi: 10.1113/jphysiol.1968.sp008469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. LILEY A. W., NORTH K. A. An electrical investigation of effects of repetitive stimulation on mammalian neuromuscular junction. J Neurophysiol. 1953 Sep;16(5):509–527. doi: 10.1152/jn.1953.16.5.509. [DOI] [PubMed] [Google Scholar]
  24. Landfield P. W., Lynch G. Impaired monosynaptic potentiation in in vitro hippocampal slices from aged, memory-deficient rats. J Gerontol. 1977 Sep;32(5):523–533. doi: 10.1093/geronj/32.5.523. [DOI] [PubMed] [Google Scholar]
  25. Lynch G. S., Dunwiddie T., Gribkoff V. Heterosynaptic depression: a postsynaptic correlate of long-term potentiation. Nature. 1977 Apr 21;266(5604):737–739. doi: 10.1038/266737a0. [DOI] [PubMed] [Google Scholar]
  26. Mallart A., Martin A. R. An analysis of facilitation of transmitter release at the neuromuscular junction of the frog. J Physiol. 1967 Dec;193(3):679–694. doi: 10.1113/jphysiol.1967.sp008388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Mallart A., Martin A. R. The relation between quantum content and facilitation at the neuromuscular junction of the frog. J Physiol. 1968 Jun;196(3):593–604. doi: 10.1113/jphysiol.1968.sp008525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Rahamimoff R. A dual effect of calcium ions on neuromuscular facilitation. J Physiol. 1968 Mar;195(2):471–480. doi: 10.1113/jphysiol.1968.sp008468. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Richards C. D. Potentiation and depression of synaptic transmission in the olfactory cortex of the guinea-pig. J Physiol. 1972 Apr;222(1):209–231. doi: 10.1113/jphysiol.1972.sp009794. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Schwartzkroin P. A., Wester K. Long-lasting facilitation of a synaptic potential following tetanization in the in vitro hippocampal slice. Brain Res. 1975 May 16;89(1):107–119. doi: 10.1016/0006-8993(75)90138-9. [DOI] [PubMed] [Google Scholar]
  31. Spencer H. J., Gribkoff V. K., Cotman C. W., Lynch G. S. GDEE antagonism of iontophoretic amino acid excitations in the intact hippocampus and in the hippocampal slice preparation. Brain Res. 1976 Apr 9;105(3):471–481. doi: 10.1016/0006-8993(76)90594-1. [DOI] [PubMed] [Google Scholar]
  32. Steward O., White W. F., Cotman C. W. Potentiation of the excitatory synaptic action of commissural, associational and entorhinal afferents to dentate granule cells. Brain Res. 1977 Oct 14;134(3):551–560. doi: 10.1016/0006-8993(77)90830-7. [DOI] [PubMed] [Google Scholar]
  33. TAKEUCHI A., TAKEUCHI N. Electrical changes in pre- and postsynaptic axons of the giant synapse of Loligo. J Gen Physiol. 1962 Jul;45:1181–1193. doi: 10.1085/jgp.45.6.1181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Yamamoto C., McIlwain H. Potentials evoked in vitro in preparations from the mammalian brain. Nature. 1966 Jun 4;210(5040):1055–1056. doi: 10.1038/2101055a0. [DOI] [PubMed] [Google Scholar]
  35. Younkin S. G. An analysis of the role of calcium in facilitation at the frog neuromuscular junction. J Physiol. 1974 Feb;237(1):1–14. doi: 10.1113/jphysiol.1974.sp010466. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES