Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1980 Feb;299:465–484. doi: 10.1113/jphysiol.1980.sp013137

Mechanical relaxation rate and metabolism studied in fatiguing muscle by phosphorus nuclear magnetic resonance.

M J Dawson, D G Gadian, D R Wilkie
PMCID: PMC1279237  PMID: 6966688

Abstract

1. We have used phosphorus nuclear magnetic resonance (31P NMR) to study muscular fatigue in anaerobic amphibian muscle. In this paper the biochemical and energetic changes that result from a series of tetani are related to the decrease in rate constant (1/tau) for the final, exponential, phase of relaxation. 2. Using 31P NMR we have measured the concentrations of phosphocreatine (PCr), inorganic phosphate (Pi) and ATP as well as the internal pH. From our measurements we have calculated [creatine], [free ADP], the free-energy change (more precisely, the affinity A = -dG/d xi) for ATP hydrolysis and the rates of lactic acid production and of ATP hydrolysis. 3. We have found that 1/tau, the rate constant of relaxation, is correlated with each of the following, independently of the pattern of stimulation: isometric force production, all of the measured or calculated metabolite levels, pH and dG/d xi. 4. There is a clear dependence upon the pattern of stimulation of the relation between 1/tau and each of the following: total duration of the experiment, number of contractions, rate of lactic acid production and rate of ATP hydrolysis. 5. The rate of relaxation is linearly related to [PCr], [creatine], [Pi] and dG/d xi. It is nonlinearly related to isometric force, [ATP], [H+] and rate of ATP hydrolysis. 6. We conclude that the change in 1/tau, like that of isometric force, depends upon metabolic factors, and not upon any independent changes in the activation or deactivation of contraction. We suggest that 1/tau may depend upon the free-energy change for ATP hydrolysis which in turn may be related to the rate of Ca2+ uptake into the sarcoplasmic reticulum.

Full text

PDF
465

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blinks J. R., Rüdel R., Taylor S. R. Calcium transients in isolated amphibian skeletal muscle fibres: detection with aequorin. J Physiol. 1978 Apr;277:291–323. doi: 10.1113/jphysiol.1978.sp012273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bolton T. B., Vaughan-Jones R. D. Continuous direct measurement of intracellular chloride and pH in frog skeletal muscle. J Physiol. 1977 Sep;270(3):801–833. doi: 10.1113/jphysiol.1977.sp011983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bozler E. The heat production of smooth muscle. J Physiol. 1930 Jun 27;69(4):442–462. doi: 10.1113/jphysiol.1930.sp002662. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Briggs F. N., Poland J. L., Solaro R. J. Relative capabilities of sarcoplasmic reticulum in fast and slow mammalian skeletal muscles. J Physiol. 1977 Apr;266(3):587–594. doi: 10.1113/jphysiol.1977.sp011783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Burt C. T., Glonek T., Bárány M. Phosphorus-31 nuclear magnetic resonance detection of unexpected phosphodiesters in muscle. Biochemistry. 1976 Nov 2;15(22):4850–4853. doi: 10.1021/bi00667a015. [DOI] [PubMed] [Google Scholar]
  6. Chalovich J. M., Burt C. T., Cohen S. M., Glonek T., Bárány M. Identification of an unknown 31P nuclear magnetic resonance from dystrophic chicken as L-serine ethanolamine phosphodiester. Arch Biochem Biophys. 1977 Aug;182(2):683–689. doi: 10.1016/0003-9861(77)90549-5. [DOI] [PubMed] [Google Scholar]
  7. Connolly R., Gough W., Winegrad S. Characteristics of the isometric twitch of skeletal muscle immediately after a tetanus. A study of the influence of the distribution of calcium within the sarcoplasmic reticulum on the twitch. J Gen Physiol. 1971 Jun;57(6):697–709. [PubMed] [Google Scholar]
  8. Dawson M. J., Gadian D. G., Wilkie D. R. Contraction and recovery of living muscles studies by 31P nuclear magnetic resonance. J Physiol. 1977 Jun;267(3):703–735. doi: 10.1113/jphysiol.1977.sp011835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dawson M. J., Gadian D. G., Wilkie D. R. Muscular fatigue investigated by phosphorus nuclear magnetic resonance. Nature. 1978 Aug 31;274(5674):861–866. doi: 10.1038/274861a0. [DOI] [PubMed] [Google Scholar]
  10. Edman K. A., Flitney F. W. Non-uniform behaviour of sarcomeres during isometric relaxation of skeletal muscle [proceedings]. J Physiol. 1977 Oct;271(2):15P–16P. [PubMed] [Google Scholar]
  11. Edwards R. H., Hill D. K., Jones D. A. Effect of fatigue on the time course of relaxation from isometric contractions of skeletal muscle in man. J Physiol. 1972 Dec;227(2):26P–27P. [PubMed] [Google Scholar]
  12. Edwards R. H., Hill D. K., Jones D. A. Heat production and chemical changes during isometric contractions of the human quadriceps muscle. J Physiol. 1975 Oct;251(2):303–315. doi: 10.1113/jphysiol.1975.sp011094. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Edwards R. H., Hill D. K., Jones D. A. Metabolic changes associated with the slowing of relaxation in fatigued mouse muscle. J Physiol. 1975 Oct;251(2):287–301. doi: 10.1113/jphysiol.1975.sp011093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Eggleton P., Eggleton G. P. Further observations on phosphagen. J Physiol. 1928 Mar 30;65(1):15–24. doi: 10.1113/jphysiol.1928.sp002457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Endo M. Calcium release from the sarcoplasmic reticulum. Physiol Rev. 1977 Jan;57(1):71–108. doi: 10.1152/physrev.1977.57.1.71. [DOI] [PubMed] [Google Scholar]
  16. Ferenczi M. A., Homsher E., Simmons R. M., Trentham D. R. Reaction mechanism of the magnesium ion-dependent adenosine triphosphatase of frog muscle myosin and subfragment 1. Biochem J. 1978 Apr 1;171(1):165–175. doi: 10.1042/bj1710165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gaskell W. H. On the Tonicity of the Heart and Blood Vessels. J Physiol. 1880 Aug;3(1):48–92.16. doi: 10.1113/jphysiol.1880.sp000083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gilbert C., Kretzschmar K. M., Wilkie D. R., Woledge R. C. Chemical change and energy output during muscular contraction. J Physiol. 1971 Oct;218(1):163–193. doi: 10.1113/jphysiol.1971.sp009609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. HASSELBACH W., MAKINOSE M. ATP and active transport. Biochem Biophys Res Commun. 1962 Apr 3;7:132–136. doi: 10.1016/0006-291x(62)90161-4. [DOI] [PubMed] [Google Scholar]
  20. Huxley A. F., Simmons R. M. Rapid 'give' and the tension 'shoulder' in the relaxation of frog muscle fibres. J Physiol. 1970 Sep;210(1):32P–33P. [PubMed] [Google Scholar]
  21. JEWELL B. R., WILKIE D. R. The mechanical properties of relaxing muscle. J Physiol. 1960 Jun;152:30–47. doi: 10.1113/jphysiol.1960.sp006467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. MacLennan D. H., Holland P. C. Calcium transport in sarcoplasmic reticulum. Annu Rev Biophys Bioeng. 1975;4(00):377–404. doi: 10.1146/annurev.bb.04.060175.002113. [DOI] [PubMed] [Google Scholar]
  23. Ogawa Y. Relationship between rates of Ca-uptake and affinities for Ca of the sarcoplasmic reticulum. J Biochem. 1972 Mar;71(3):571–573. [PubMed] [Google Scholar]
  24. Ogawa Y. Some properties of fragmented frog sarcoplasmic reticulum with particular reference to its response to caffeine. J Biochem. 1970 May;67(5):667–683. doi: 10.1093/oxfordjournals.jbchem.a129295. [DOI] [PubMed] [Google Scholar]
  25. Panet R., Selinger Z. Synthesis of ATP coupled to Ca 2+ release from sarcoplasmic reticulum vesicles. Biochim Biophys Acta. 1972 Jan 17;255(1):34–42. doi: 10.1016/0005-2736(72)90005-3. [DOI] [PubMed] [Google Scholar]
  26. Parkinson J. L. The effect of activity on the form of the muscle twitch. J Physiol. 1933 Apr 13;78(1):106–112. doi: 10.1113/jphysiol.1933.sp002990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sandow A. Excitation-contraction coupling in skeletal muscle. Pharmacol Rev. 1965 Sep;17(3):265–320. [PubMed] [Google Scholar]
  28. Trentham D. R., Eccleston J. F., Bagshaw C. R. Kinetic analysis of ATPase mechanisms. Q Rev Biophys. 1976 May;9(2):217–281. doi: 10.1017/s0033583500002419. [DOI] [PubMed] [Google Scholar]
  29. WILKIE D. R. Thermodynamics and the interpretation of biological heat measurements. Prog Biophys Mol Biol. 1960;10:259–298. [PubMed] [Google Scholar]
  30. Wilkie D. R. Generation of protons by metabolic processes other than glycolysis in muscle cells: a critical view. J Mol Cell Cardiol. 1979 Mar;11(3):325–330. doi: 10.1016/0022-2828(79)90446-2. [DOI] [PubMed] [Google Scholar]
  31. Wilkie D. R. The efficiency of muscular contraction. J Mechanochem Cell Motil. 1974 Mar;2(4):257–267. [PubMed] [Google Scholar]
  32. Winegrad S. Intracellular calcium movements of frog skeletal muscle during recovery from tetanus. J Gen Physiol. 1968 Jan;51(1):65–83. doi: 10.1085/jgp.51.1.65. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Winegrad S. The intracellular site of calcium activaton of contraction in frog skeletal muscle. J Gen Physiol. 1970 Jan;55(1):77–88. doi: 10.1085/jgp.55.1.77. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Yagi N., Ito M. H., Nakajima H., Izumi T., Matsubara I. Return of myosin heads to thick filaments after muscle contraction. Science. 1977 Aug 12;197(4304):685–687. doi: 10.1126/science.301660. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES