Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1980;300:75–87. doi: 10.1113/jphysiol.1980.sp013152

Central respiratory effects of carbon dioxide, and carotid sinus nerve and muscle afferents.

F L Eldridge, P Gill-Kumar
PMCID: PMC1279345  PMID: 6770087

Abstract

1. In anaesthetized and paralysed cats, artificially ventilated and with the vagi and carotid sinus nerves cut, the effects of (a) changing end-tidal CO2, (b) stimulation of carotid sinus nerves, and (c) squeezing the calf muscles, on neural respiratory output have been studied. 2. The peak value of integrated phrenic activity, which is the neural equivalent of tidal volume (VTn), the rate of rise of integrated phrenic activity (Slope), inspiratory duration (TI), expiratory duration (TE), and total cycle length (Ttot) were measured. It was found that Slope-VTn, VTn-Ttot and VTn-TE relationships were similar whether respiration was stimulated by carotid sinus nerve stimulation or by increasing end-tidal CO2. However, when respiration was stimulated by squeezing the calf muscles, a given Slope was associated with a smaller VTn and a given VTn was associated with smaller Ttot and TE values than obtained with the other two inputs. 3. It is concluded that these results are compatible with the hypotheses that (1) inputs from central and peripheral chemoreceptors have similar actions at various sites in the respiratory centre complex, and (2) afferents activated by squeezing the limb muscles have additional facilitatory actions on mechanisms terminating inspiration and expiration.

Full text

PDF
75

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradley G. W., von Euler C., Marttila I., Roos B. A model of the central and reflex inhibition of inspiration in the cat. Biol Cybern. 1975 Aug 8;19(2):105–116. doi: 10.1007/BF00364107. [DOI] [PubMed] [Google Scholar]
  2. Eldridge F. L. Central neural respiratory stimulatory effect of active respiration. J Appl Physiol. 1974 Nov;37(5):723–735. doi: 10.1152/jappl.1974.37.5.723. [DOI] [PubMed] [Google Scholar]
  3. Eldridge F. L. Relationship between phrenic nerve activity and ventilation. Am J Physiol. 1971 Aug;221(2):535–543. doi: 10.1152/ajplegacy.1971.221.2.535. [DOI] [PubMed] [Google Scholar]
  4. GILL P. K., KUNO M. PROPERTIES OF PHRENIC MOTONEURONES. J Physiol. 1963 Sep;168:258–273. doi: 10.1113/jphysiol.1963.sp007191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Grunstein M. M., Derenne J. P., Milic-Emili J. Control of depth and frequency of breathing during baroreceptor stimulation in cats. J Appl Physiol. 1975 Sep;39(3):395–404. doi: 10.1152/jappl.1975.39.3.395. [DOI] [PubMed] [Google Scholar]
  6. Iscoe S., Polosa C. Synchronization of respiratory frequency by somatic afferent stimulation. J Appl Physiol. 1976 Feb;40(2):138–148. doi: 10.1152/jappl.1976.40.2.138. [DOI] [PubMed] [Google Scholar]
  7. John W. M., Wang S. C. Response of medullary respiratory neurons to hypercapnia and isocapnic hypoxia. J Appl Physiol Respir Environ Exerc Physiol. 1977 Nov;43(5):812–821. doi: 10.1152/jappl.1977.43.5.812. [DOI] [PubMed] [Google Scholar]
  8. Lahiri S., Mei S. S., Kao F. F. Vagal modulation of respiratory control during exercise. Respir Physiol. 1975 Jan;23(1):133–146. doi: 10.1016/0034-5687(75)90077-8. [DOI] [PubMed] [Google Scholar]
  9. Lopata M., Evanich M. J., Lourenço R. V. Quantification of diaphragmatic EMG response to CO2 rebreathing in humans. J Appl Physiol Respir Environ Exerc Physiol. 1977 Aug;43(2):262–270. doi: 10.1152/jappl.1977.43.2.262. [DOI] [PubMed] [Google Scholar]
  10. McCloskey D. I., Mitchell J. H. Reflex cardiovascular and respiratory responses originating in exercising muscle. J Physiol. 1972 Jul;224(1):173–186. doi: 10.1113/jphysiol.1972.sp009887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Miller M. J., Tenney S. M. Hyperoxic hyperventilation in carotid-deafferented cats. Respir Physiol. 1975 Jan;23(1):23–30. doi: 10.1016/0034-5687(75)90068-7. [DOI] [PubMed] [Google Scholar]
  12. Miller M. J., Tenney S. M. Hypoxia-induced tachypnea in carotid-deafferented cats. Respir Physiol. 1975 Jan;23(1):31–39. doi: 10.1016/0034-5687(75)90069-9. [DOI] [PubMed] [Google Scholar]
  13. Miserocchi G. Role of peripheral and central chemosensitive afferents in the control of depth and frequency of breathing. Respir Physiol. 1976 Feb;26(1):101–111. doi: 10.1016/0034-5687(76)90055-4. [DOI] [PubMed] [Google Scholar]
  14. Mitchell R. A., Herbert D. A. The effect of carbon dioxide on the membrane potential of medullary respiratory neurons. Brain Res. 1974 Jul 26;75(2):345–349. doi: 10.1016/0006-8993(74)90759-8. [DOI] [PubMed] [Google Scholar]
  15. Mizumura K., Kumazawa T. Reflex respiratory response induced py chemical stimulation of muscle afferents. Brain Res. 1976 Jun 11;109(2):402–406. doi: 10.1016/0006-8993(76)90543-6. [DOI] [PubMed] [Google Scholar]
  16. Mustafa M. E., Purves M. J. The effect of CO 2 upon discharge from slowly adapting stretch receptors in the lungs of rabbits. Respir Physiol. 1972 Oct;16(2):197–212. doi: 10.1016/0034-5687(72)90051-5. [DOI] [PubMed] [Google Scholar]
  17. PAINTAL A. S. Functional analysis of group III afferent fibres of mammalian muscles. J Physiol. 1960 Jul;152:250–270. doi: 10.1113/jphysiol.1960.sp006486. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Phillipson E. A., Hickey R. F., Bainton C. R., Nadel J. A. Effect of vagal blockade on regulation of breathing in conscious dogs. J Appl Physiol. 1970 Oct;29(4):475–479. doi: 10.1152/jappl.1970.29.4.475. [DOI] [PubMed] [Google Scholar]
  19. Remmers J. E., Marttila I. Action of intercostal muscle afferents on the respiratory rhythm of anesthetized cats. Respir Physiol. 1975 Jun;24(1):31–41. doi: 10.1016/0034-5687(75)90119-x. [DOI] [PubMed] [Google Scholar]
  20. Rosenstein R., McCarthy L. E., Borison H. L. Rate versus depth of breathing independent of alveolar oxygen in decerebrate cats. Respir Physiol. 1973 Oct;19(1):80–87. doi: 10.1016/0034-5687(73)90091-1. [DOI] [PubMed] [Google Scholar]
  21. Saint John W. M., Bond G. C., Pasley J. N. Integration of chemoreceptor stimuli by rostral brainstem respiratory areas. J Appl Physiol. 1975 Aug;39(2):209–214. doi: 10.1152/jappl.1975.39.2.209. [DOI] [PubMed] [Google Scholar]
  22. Sant'Ambrogio G., Miserocchi G., Mortola J. Transient responses of pulmonary stretch receptors in the dog to inhalation of carbon dioxide. Respir Physiol. 1974 Oct;22(1-2):191–197. doi: 10.1016/0034-5687(74)90057-7. [DOI] [PubMed] [Google Scholar]
  23. Senapati J. M. Effect of stimulation of muscle afferents on ventilation of dogs. J Appl Physiol. 1966 Jan;21(1):242–246. doi: 10.1152/jappl.1966.21.1.242. [DOI] [PubMed] [Google Scholar]
  24. Smith D. M., Mercer R. R., Eldridge F. L. Servo control of end-tidal CO2 in paralyzed animals. J Appl Physiol Respir Environ Exerc Physiol. 1978 Jul;45(1):133–136. doi: 10.1152/jappl.1978.45.1.133. [DOI] [PubMed] [Google Scholar]
  25. St John W. M. An analysis of respiratory frequency alterations in vagotomized, decerebrate cats. Respir Physiol. 1979 Feb;36(2):167–186. doi: 10.1016/0034-5687(79)90023-9. [DOI] [PubMed] [Google Scholar]
  26. St John W. M., Wang S. C. Integration of chemoreceptor stimuli by caudal pontile and rostral medullary sites. J Appl Physiol. 1976 Nov;41(5 Pt 1):612–622. doi: 10.1152/jappl.1976.41.5.612. [DOI] [PubMed] [Google Scholar]
  27. Widdicombe J. G., Winning A. Effects of hypoxia, hypercapnia and changes in body temperature on the pattern of breathing in cats. Respir Physiol. 1974 Aug;21(2):203–221. doi: 10.1016/0034-5687(74)90095-4. [DOI] [PubMed] [Google Scholar]
  28. von Euler C., Marttila I., Remmers J. E., Trippenbach T. Effects of lesions in the parabrachial nucleus on the mechanisms for central and reflex termination of inspiration in the cat. Acta Physiol Scand. 1976 Mar;96(3):324–337. doi: 10.1111/j.1748-1716.1976.tb10203.x. [DOI] [PubMed] [Google Scholar]
  29. von Euler C. The functional organization of the respiratory phase-switching mechanisms. Fed Proc. 1977 Sep;36(10):2375–2380. [PubMed] [Google Scholar]
  30. von Euler C., Trippenbach T. Excitability changes of the inspiratory "off-switch" mechanism tested by electrical stimulation in nucleus parabrachialis in the cat. Acta Physiol Scand. 1976 Jun;97(2):175–188. doi: 10.1111/j.1748-1716.1976.tb10250.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES