Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1980;300:505–513. doi: 10.1113/jphysiol.1980.sp013175

Effects of acetylcholine on ion fluxes and chlorotetracycline fluorescence in pancreatic islets

E Gagerman 1, J Sehlin 1, I-B Täljedal 1
PMCID: PMC1279368  PMID: 6991671

Abstract

1. Acetylcholine potentiated glucose-stimulated insulin release from ob/ob-mouse islets in salt-balanced bicarbonate buffer and to a lesser extent in Tris buffer; basal insulin release at 3 mM-D-glucose was not affected. Potentiation required the presence of Ca2+.

2. In bicarbonate buffer, ACh stimulated the islet uptake of 45Ca2+ at 3 mM-glucose but not significantly at 11 mM; no effect was seen in Tris buffer.

3. At 11 mM-glucose, ACh increased the fluorescence from Ca2+-chlorotetracycline in dispersed islet cells; the effect was inhibited by atropine.

4. At both 3 and 11 mM-glucose, ACh stimulated the islet uptake of 22Na+ in 60 min. At 11 mM-glucose, 22Na+ uptake in 5 min was also enhanced significantly, and this effect was inhibited by atropine.

5. At 3 mM-glucose, ACh probably stimulated the islet uptake of 86Rb+ in 10 min.

6. ACh had no effect on 36Cl- retention at 3 or 11 mM-glucose, or on the oxidation of D-[U-14C]glucose (11 mM).

7. The insulin secretory potentiator, ACh, does not act by accelerating glucose oxidation and does not induce the same ionic effects as the secretory initiator, D-glucose. Increased Na+ permeability and altered interaction of Ca2+ with the plasma membrane may play roles in the cholinergic depolarization of β-cells and potentiation of insulin release.

Full text

PDF
505

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atwater I., Meissner H. P. Electrogenic sodium pump in beta-cells of islets of Langerhans. J Physiol. 1975 May;247(1):56P–58P. [PubMed] [Google Scholar]
  2. Bergman R. N., Miller R. E. Direct enhancement of insulin secretion by vagal stimulation of the isolated pancreas. Am J Physiol. 1973 Aug;225(2):481–486. doi: 10.1152/ajplegacy.1973.225.2.481. [DOI] [PubMed] [Google Scholar]
  3. COUPLAND R. E. The innervation of pan creas of the rat, cat and rabbit as revealed by the cholinesterase technique. J Anat. 1958 Jan;92(1):143–149. [PMC free article] [PubMed] [Google Scholar]
  4. Chandler D. E., Williams J. A. Intracellular divalent cation release in pancreatic acinar cells during stimulus-secretion coupling. I. Use of chlorotetracycline as fluorescent probe. J Cell Biol. 1978 Feb;76(2):371–385. doi: 10.1083/jcb.76.2.371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chandler D. E., Williams J. A. Intracellular divalent cation release in pancreatic acinar cells during stimulus-secretion coupling. II. Subcellular localization of the fluorescent probe chlorotetracycline. J Cell Biol. 1978 Feb;76(2):386–399. doi: 10.1083/jcb.76.2.386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Daniel P. M., Henderson J. R. The effect of vagal stimulation on plasma insulin and glucose levels in the baboon. J Physiol. 1967 Sep;192(2):317–327. doi: 10.1113/jphysiol.1967.sp008302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Esterhuizen A. C., Spriggs T. L., Lever J. D. Nature of islet-cell innervation in the cat pancreas. Diabetes. 1968 Jan;17(1):33–36. doi: 10.2337/diab.17.1.33. [DOI] [PubMed] [Google Scholar]
  8. Flatt P. R., Gylfe E., Hellman B. Dissociation between 45Ca uptake and insulin release: evidence for a inhibitory pool of caocium in the beta-cell plasma membrane [proceedings]. Biochem Soc Trans. 1979 Oct;7(5):1097–1100. doi: 10.1042/bst0071097. [DOI] [PubMed] [Google Scholar]
  9. Frohman L. A., Ezdinli E. Z., Javid R. Effect of vagotomy and vagal stimulation on insulin secretion. Diabetes. 1967 Jul;16(7):443–448. doi: 10.2337/diab.16.7.443. [DOI] [PubMed] [Google Scholar]
  10. Gagerman E., Idahl L. A., Meissner H. P., Täljedal I. B. Insulin release, cGMP, cAMP, and membrane potential in acetylcholine-stimulated islets. Am J Physiol. 1978 Nov;235(5):E493–E500. doi: 10.1152/ajpendo.1978.235.5.E493. [DOI] [PubMed] [Google Scholar]
  11. Hellman B., Idahl L. A., Lenzen S., Sehlin J., Täljedal I. B. Further studies on the relationship between insulin release and lanthanum-nondisplaceable 45Ca2+ uptake by pancreatic islets: effects of fructose and starvation. Endocrinology. 1978 Jun;102(6):1856–1863. doi: 10.1210/endo-102-6-1856. [DOI] [PubMed] [Google Scholar]
  12. Hellman B., Sehlin J., Täljedal I. B. Calcium uptake by pancreatic -cells as measured with the aid of 45 Ca and mannitol- 3 H. Am J Physiol. 1971 Dec;221(6):1795–1801. doi: 10.1152/ajplegacy.1971.221.6.1795. [DOI] [PubMed] [Google Scholar]
  13. Hellman B., Sehlin J., Täljedal I. B. Effect of Na+, K+ and Mg2+ on 45Ca+ uptake by pancreatic islets. Pflugers Arch. 1978 Dec 28;378(2):93–97. doi: 10.1007/BF00584440. [DOI] [PubMed] [Google Scholar]
  14. Hellman B., Sehlin J., Täljedal I. B. Effects of glucose and other modifiers of insulin release on the oxidative metabolism of amino acids in micro-dissected pancreatic islets. Biochem J. 1971 Jul;123(4):513–521. doi: 10.1042/bj1230513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hellman B., Sehlin J., Täljedal I. B. Effects of glucose on 45Ca2+ uptake by pancreatic islets as studied with the lanthanum method. J Physiol. 1976 Jan;254(3):639–656. doi: 10.1113/jphysiol.1976.sp011250. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hellman B., Sehlin J., Täljedal I. B. Transport of -aminoisobutyric acid in mammalian pancretic -cells. Diabetologia. 1971 Aug;7(4):256–265. doi: 10.1007/BF01211878. [DOI] [PubMed] [Google Scholar]
  17. Iversen J. Effect of acetyl choline on the secretion of glucagon and insulin from the isolated, perfused canine pancreas. Diabetes. 1973 May;22(5):381–387. doi: 10.2337/diab.22.5.381. [DOI] [PubMed] [Google Scholar]
  18. Kaneto A., Kosaka K., Nakao K. Effects of stimulation of the vagus nerve on insulin secretion. Endocrinology. 1967 Mar;80(3):530–536. doi: 10.1210/endo-80-3-530. [DOI] [PubMed] [Google Scholar]
  19. Kawazu S., Boschero A. C., Delcroix C., Malaisse W. J. The stimulus-secretion coupling of glucose-induced insulin release. XXVIII. Effect of glucose on Na+ fluxes in isolated islets. Pflugers Arch. 1978 Jul 18;375(2):197–206. doi: 10.1007/BF00584244. [DOI] [PubMed] [Google Scholar]
  20. Loubatières-Mariani M. M., Chapal J., Alric R., Loubatières A. Studies of the cholinergic receptors involved in the secretion of insulin using isolated perfused rat pancreas. Diabetologia. 1973 Dec;9(6):439–446. doi: 10.1007/BF00461685. [DOI] [PubMed] [Google Scholar]
  21. Perlman R. L., Chalfie M. Catecholamine release from the adrenal medulla. Clin Endocrinol Metab. 1977 Nov;6(3):551–576. doi: 10.1016/s0300-595x(77)80071-6. [DOI] [PubMed] [Google Scholar]
  22. Petersen O. H. Electrophysiology of mammalian gland cells. Physiol Rev. 1976 Jul;56(3):535–577. doi: 10.1152/physrev.1976.56.3.535. [DOI] [PubMed] [Google Scholar]
  23. Porte D., Jr, Girardier L., Seydoux J., Kanazawa Y., Posternak J. Neural regulation of insulin secretion in the dog. J Clin Invest. 1973 Jan;52(1):210–214. doi: 10.1172/JCI107168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sehlin J. Interrelationship between chloride fluxes in pancreatic islets and insulin release. Am J Physiol. 1978 Nov;235(5):E501–E508. doi: 10.1152/ajpendo.1978.235.5.E501. [DOI] [PubMed] [Google Scholar]
  25. Sehlin J., Taljedal I. B. Glucose-induced decrease in Rb+ permeability in pancreatic beta cells. Nature. 1975 Feb 20;253(5493):635–636. doi: 10.1038/253635a0. [DOI] [PubMed] [Google Scholar]
  26. Sehlin J., Täljedal I. B. 45Ca2+ uptake by dispersed pancreatic islet cells: effect of D-glucose and the calcium probe, chlorotetracycline. Pflugers Arch. 1979 Sep;381(3):281–285. doi: 10.1007/BF00583260. [DOI] [PubMed] [Google Scholar]
  27. Sehlin J., Täljedal I. B. Sodium uptake by microdissected pancreatic islets: effects of ouabain and chloromercuribenzene-p-sulphonic acid. FEBS Lett. 1974 Feb 15;39(2):209–213. doi: 10.1016/0014-5793(74)80052-9. [DOI] [PubMed] [Google Scholar]
  28. Sehlin J., Täljedal I. B. Transport of rubidium and sodium in pancreatic islets. J Physiol. 1974 Oct;242(2):505–515. doi: 10.1113/jphysiol.1974.sp010720. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Täljedal I. B. Chlorotetracycline as a fluorescent Ca2+ probe in pancreatic islet cells. J Cell Biol. 1978 Mar;76(3):652–674. doi: 10.1083/jcb.76.3.652. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Täljedal I. B. Polarization of chlorotetracycline fluorescence in pancreatic islet cells and its response to calcium ions and D-glucose. Biochem J. 1979 Jan 15;178(1):187–193. doi: 10.1042/bj1780187. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES