Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1980 Apr;301:383–399. doi: 10.1113/jphysiol.1980.sp013212

Effects of neonatal enucleation on the functional organization of the superior colliculus in the golden hamster.

R W Rhoades
PMCID: PMC1279405  PMID: 7411438

Abstract

1. The responses of visual, auditory and somatosensory superior collicular neurones were investigated using extracellular single unit recording techniques in hamsters which were subjected to the removal of one eye on the day of birth. 2. Neonatal enucleation resulted in a marked increase in the region of the colliculus from which visual neurones activated by stimulation of the ipsilateral eye could be recorded. In most cases the visuotopic representation in the colliculus ipsilateral to the remaining eye mirrored that observed in the contralateral tectum along both the rostrocaudal and mediolateral axes: in both colliculi temporal retina projected rostrally and inferior retina medially. In some animals, however, there appeared to be a dual mapping of the remaining eye onto the ipsilateral tectum. In these hamsters the central portion of the visual field was represented twice along the rostrocaudal axis of colliculus. 3. No changes in the topography of the somatosensory and auditory representations in the tectum were observed following neonatal enucleation. 4. The laminar distribution of visual neurones in the ipsilateral colliculus was markedly altered in the neonatally enucleated hamsters. Very few exclusively visual units were encountered in the layers ventral to the stratum opticum and almost all of the visual cells recorded in the ipsilateral colliculus were isolated within 150 microM of the tectal surface. 5. In the posterior half of the ipsilateral tectum a large number of extravisually responsive cells were encountered in the stratum griseum superficiale and stratum opticum. This was not the case in the colliculus contralateral to the remaining eye, nor has it ever been observed in normal hamsters. 6. Recordings from animals subjected to both neonatal enucleation and acute bilateral removal of somatosensory and auditory cortex indicated that the projections from these areas to the colliculus were not essential to the observed changes in laminar organization. 7. Recordings from normally reared hamsters which were subjected to removal of one eye at the time of the recording experiment suggested further that the isolation of extravisual cells in the superficial tectal aminae of the neonatal enucleates was probably not the result of the 'unmasking' of extravisual influences in the superficial layers which are present, but ineffective, in the normal case.

Full text

PDF
383

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antonetty C. M., Webster K. E. The organisation of the spinotectal projection. An experimental study in the rat. J Comp Neurol. 1975 Oct 15;163(4):449–465. doi: 10.1002/cne.901630405. [DOI] [PubMed] [Google Scholar]
  2. BISHOP P. O., BURKE W., DAVIS R. Single-unit recording from antidromically activated optic radiation neurones. J Physiol. 1962 Aug;162:432–450. doi: 10.1113/jphysiol.1962.sp006943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Basbaum A. I., Wall P. D. Chronic changes in the response of cells in adult cat dorsal horn following partial deafferentation: the appearance of responding cells in a previously non-responsive region. Brain Res. 1976 Nov 5;116(2):181–204. doi: 10.1016/0006-8993(76)90899-4. [DOI] [PubMed] [Google Scholar]
  4. Berman N., Sterling P. Cortical suppression of the ritino-collicular pathway in the monocularly deprived cat. J Physiol. 1976 Feb;255(1):263–273. doi: 10.1113/jphysiol.1976.sp011279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brown M. C., Jansen J. K., Van Essen D. Polyneuronal innervation of skeletal muscle in new-born rats and its elimination during maturation. J Physiol. 1976 Oct;261(2):387–422. doi: 10.1113/jphysiol.1976.sp011565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Caviness V. S., Jr Architectonic map of neocortex of the normal mouse. J Comp Neurol. 1975 Nov 15;164(2):247–263. doi: 10.1002/cne.901640207. [DOI] [PubMed] [Google Scholar]
  7. Chalupa L. M., Rhoades R. W. An autoradiographic study of the retinotectal projection in the golden hamster. J Comp Neurol. 1979 Aug 15;186(4):561–569. doi: 10.1002/cne.901860405. [DOI] [PubMed] [Google Scholar]
  8. Chalupa L. M., Rhoades R. W. Modification of visual response properties in the superior colliculus of the golden hamster following stroboscopic rearing. J Physiol. 1978 Jan;274:571–592. doi: 10.1113/jphysiol.1978.sp012167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chalupa L. M., Rhoades R. W. Responses of visual, somatosensory, and auditory neurones in the golden hamster's superior colliculus. J Physiol. 1977 Sep;270(3):595–626. doi: 10.1113/jphysiol.1977.sp011971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Crewther D. P., Crewther S. G., Pettigrew J. D. A role for extraocular afferents in post-critical period reversal of monocular deprivation. J Physiol. 1978 Sep;282:181–195. doi: 10.1113/jphysiol.1978.sp012456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cunningham T. J. Early eye removal produces excessive bilateral branching in the rat: application of cobalt filling method. Science. 1976 Nov 19;194(4267):857–859. doi: 10.1126/science.982050. [DOI] [PubMed] [Google Scholar]
  12. Cunningham T. J., Speas G. Inversion of anomalous uncrossed projections along the mediolateral axis of the superior colliculus: implications for retinocollicular specificity. Brain Res. 1975 Apr 25;88(1):73–79. doi: 10.1016/0006-8993(75)90950-6. [DOI] [PubMed] [Google Scholar]
  13. Cynader M., Berman N. Receptive-field organization of monkey superior colliculus. J Neurophysiol. 1972 Mar;35(2):187–201. doi: 10.1152/jn.1972.35.2.187. [DOI] [PubMed] [Google Scholar]
  14. DELONG G. R., SIDMAN R. L. Effects of eye removal at birth on histogenesis of the mouse superior colliculus: an autoradiographic analysis with tritiated thymidine. J Comp Neurol. 1962 Apr;118:205–223. doi: 10.1002/cne.901180207. [DOI] [PubMed] [Google Scholar]
  15. Dräger U. C., Hubel D. H. Responses to visual stimulation and relationship between visual, auditory, and somatosensory inputs in mouse superior colliculus. J Neurophysiol. 1975 May;38(3):690–713. doi: 10.1152/jn.1975.38.3.690. [DOI] [PubMed] [Google Scholar]
  16. Fernald R., Chase R. An improved method for plotting retinal landmarks and focusing the eyes. Vision Res. 1971 Jan;11(1):95–96. doi: 10.1016/0042-6989(71)90207-0. [DOI] [PubMed] [Google Scholar]
  17. Finlay B. L., Schneps S. E., Wilson K. G., Schneider G. E. Topography of visual and somatosensory projections to the superior colliculus of the golden hamster. Brain Res. 1978 Feb 24;142(2):223–235. doi: 10.1016/0006-8993(78)90632-7. [DOI] [PubMed] [Google Scholar]
  18. Finlay B. L., Wilson K. G., Schneider G. E. Anomalous ipsilateral retinotectal projections in Syrian hamsters with early lesions: topography and functional capacity. J Comp Neurol. 1979 Feb 15;183(4):721–740. doi: 10.1002/cne.901830404. [DOI] [PubMed] [Google Scholar]
  19. Garey L. J., Jones E. G., Powell T. P. Interrelationships of striate and extrastriate cortex with the primary relay sites of the visual pathway. J Neurol Neurosurg Psychiatry. 1968 Apr;31(2):135–157. doi: 10.1136/jnnp.31.2.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Gordon B. Receptive fields in deep layers of cat superior colliculus. J Neurophysiol. 1973 Mar;36(2):157–178. doi: 10.1152/jn.1973.36.2.157. [DOI] [PubMed] [Google Scholar]
  21. Graybiel A. M. Anatomical organization of retinotectal afferents in the cat: an autoradiographic study. Brain Res. 1975 Oct 10;96(1):1–23. doi: 10.1016/0006-8993(75)90566-1. [DOI] [PubMed] [Google Scholar]
  22. HUBEL D. H. Single unit activity in lateral geniculate body and optic tract of unrestrained cats. J Physiol. 1960 Jan;150:91–104. doi: 10.1113/jphysiol.1960.sp006375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hubel D. H., Wiesel T. N., LeVay S. Plasticity of ocular dominance columns in monkey striate cortex. Philos Trans R Soc Lond B Biol Sci. 1977 Apr 26;278(961):377–409. doi: 10.1098/rstb.1977.0050. [DOI] [PubMed] [Google Scholar]
  24. KLUVER H., BARRERA E. A method for the combined staining of cells and fibers in the nervous system. J Neuropathol Exp Neurol. 1953 Oct;12(4):400–403. doi: 10.1097/00005072-195312040-00008. [DOI] [PubMed] [Google Scholar]
  25. Kawamura S., Sprague J. M., Niimi K. Corticofugal projections from the visual cortices to the thalamus, pretectum and superior colliculus in the cat. J Comp Neurol. 1974 Dec 1;158(3):339–362. doi: 10.1002/cne.901580308. [DOI] [PubMed] [Google Scholar]
  26. Kratz K. E., Spear P. D. Postcritical-period reversal of effects of monocular deprivation on striate cortex cells in the cat. J Neurophysiol. 1976 May;39(3):501–511. doi: 10.1152/jn.1976.39.3.501. [DOI] [PubMed] [Google Scholar]
  27. Kuypers H. G., Lawrence D. G. Cortical projections to the red nucleus and the brain stem in the Rhesus monkey. Brain Res. 1967 Mar;4(2):151–188. doi: 10.1016/0006-8993(67)90004-2. [DOI] [PubMed] [Google Scholar]
  28. Laties A. M., Sprague J. M. The projection of optic fibers to the visual centers in the cat. J Comp Neurol. 1966 May;127(1):35–70. doi: 10.1002/cne.901270104. [DOI] [PubMed] [Google Scholar]
  29. LeVay S., Stryker M. P., Shatz C. J. Ocular dominance columns and their development in layer IV of the cat's visual cortex: a quantitative study. J Comp Neurol. 1978 May 1;179(1):223–244. doi: 10.1002/cne.901790113. [DOI] [PubMed] [Google Scholar]
  30. Leong S. K. An experimental study of the corticofugal system following cerebral lesions in the albino rats. Exp Brain Res. 1976 Oct 28;26(3):235–247. doi: 10.1007/BF00234929. [DOI] [PubMed] [Google Scholar]
  31. Leong S. K., Lund R. D. Anomalous bilateral corticofugal pathways in albino rats after neonatal lesions. Brain Res. 1973 Nov 9;62(1):218–221. doi: 10.1016/0006-8993(73)90630-6. [DOI] [PubMed] [Google Scholar]
  32. Lund R. D., Cunningham T. J., Lund J. S. Modified optic projections after unilateral eye removal in young rats. Brain Behav Evol. 1973;8(1):51–72. doi: 10.1159/000124347. [DOI] [PubMed] [Google Scholar]
  33. Lund R. D., Lund J. S. Modifications of synaptic patterns in the superior colliculus of the rat during development and following deafferentation. Vision Res. 1971;Suppl 3:281–298. doi: 10.1016/0042-6989(71)90046-0. [DOI] [PubMed] [Google Scholar]
  34. Lund R. D., Lund J. S. Plasticity in the developing visual system: the effects of retinal lesions made in young rats. J Comp Neurol. 1976 Sep 15;169(2):133–154. doi: 10.1002/cne.901690202. [DOI] [PubMed] [Google Scholar]
  35. Lund R. D., Lund J. S. Synaptic adjustment after deafferentation of the superior colliculus of the rat. Science. 1971 Feb 26;171(3973):804–807. doi: 10.1126/science.171.3973.804. [DOI] [PubMed] [Google Scholar]
  36. Lund R. D. The occipitotectal pathway of the rat. J Anat. 1966 Jan;100(Pt 1):51–62. [PMC free article] [PubMed] [Google Scholar]
  37. Merrill E. G., Wall P. D. Factors forming the edge of a receptive field: the presence of relatively ineffective afferent terminals. J Physiol. 1972 Nov;226(3):825–846. doi: 10.1113/jphysiol.1972.sp010012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Moore J. K., Karapas F., Moore R. Y. Projections of the inferior colliculus in insectivores and primates. Brain Behav Evol. 1977;14(5):301–327. doi: 10.1159/000125675. [DOI] [PubMed] [Google Scholar]
  39. Paula-Barbosa M. M., Sousa-Pinto A. Auditory cortical projections to the superior colliculus in the cat. Brain Res. 1973 Feb 14;50(1):47–61. doi: 10.1016/0006-8993(73)90593-3. [DOI] [PubMed] [Google Scholar]
  40. Rakic P. Prenatal development of the visual system in rhesus monkey. Philos Trans R Soc Lond B Biol Sci. 1977 Apr 26;278(961):245–260. doi: 10.1098/rstb.1977.0040. [DOI] [PubMed] [Google Scholar]
  41. Rakic P. Prenatal genesis of connections subserving ocular dominance in the rhesus monkey. Nature. 1976 Jun 10;261(5560):467–471. doi: 10.1038/261467a0. [DOI] [PubMed] [Google Scholar]
  42. Redfern P. A. Neuromuscular transmission in new-born rats. J Physiol. 1970 Aug;209(3):701–709. doi: 10.1113/jphysiol.1970.sp009187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Rhoades R. W., Chalupa L. M. Conduction velocity distribution of the retinal input to the hamster's superior colliculus and a correlation with receptive field characteristics. J Comp Neurol. 1979 Mar 15;184(2):243–263. doi: 10.1002/cne.901840203. [DOI] [PubMed] [Google Scholar]
  44. Rhoades R. W., Chalupa L. M. Functional and anatomical consequences of neonatal visual cortical damage in superior colliculus of the golden hamster. J Neurophysiol. 1978 Nov;41(6):1466–1494. doi: 10.1152/jn.1978.41.6.1466. [DOI] [PubMed] [Google Scholar]
  45. Richter C. P. Optic nerve sectioning in rats. Brain Res Bull. 1976 Sep-Oct;1(5):493–494. doi: 10.1016/0361-9230(76)90120-9. [DOI] [PubMed] [Google Scholar]
  46. Schneider G. E. Two visual systems. Science. 1969 Feb 28;163(3870):895–902. doi: 10.1126/science.163.3870.895. [DOI] [PubMed] [Google Scholar]
  47. So K. F., Schneider G. E., Frost D. O. Postnatal development of retinal projections to the lateral geniculate body in Syrian hamsters. Brain Res. 1978 Feb 24;142(2):343–352. doi: 10.1016/0006-8993(78)90641-8. [DOI] [PubMed] [Google Scholar]
  48. Stein B. E., Magalhães-Castro B., Kruger L. Relationship between visual and tactile representations in cat superior colliculus. J Neurophysiol. 1976 Mar;39(2):401–419. doi: 10.1152/jn.1976.39.2.401. [DOI] [PubMed] [Google Scholar]
  49. Thompson I. D. Changes in the uncrossed retinotectal projection after removal of the other eye at birth. Nature. 1979 May 3;279(5708):63–66. doi: 10.1038/279063a0. [DOI] [PubMed] [Google Scholar]
  50. Tiao Y. C., Blakemore C. Functional organization in the superior colliculus of the golden hamster. J Comp Neurol. 1976 Aug 15;168(4):483–503. doi: 10.1002/cne.901680404. [DOI] [PubMed] [Google Scholar]
  51. Vidyasagar T. R. Possible plasticity in the rat superior colliculus. Nature. 1978 Sep 14;275(5676):140–141. doi: 10.1038/275140a0. [DOI] [PubMed] [Google Scholar]
  52. Wilson M. E., Toyne M. J. Retino-tectal and cortico-tectal projections in Macaca mulatta. Brain Res. 1970 Dec 18;24(3):395–406. doi: 10.1016/0006-8993(70)90181-2. [DOI] [PubMed] [Google Scholar]
  53. Wise S. P., Jones E. G. Somatotopic and columnar organization in the corticotectal projection of the rat somatic sensory cortex. Brain Res. 1977 Sep 16;133(2):223–235. doi: 10.1016/0006-8993(77)90760-0. [DOI] [PubMed] [Google Scholar]
  54. Yoon M. G. Readjustment of retinotectal projection following reimplantation of a rotated or inverted tectal tissue in adult goldfish. J Physiol. 1975 Oct;252(1):137–158. doi: 10.1113/jphysiol.1975.sp011138. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES