Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1980 Apr;301:535–548. doi: 10.1113/jphysiol.1980.sp013222

Dark adaptation within the receptive field centre of rat retinal ganglion cells.

C M Cicerone, D G Green
PMCID: PMC1279415  PMID: 7411447

Abstract

1. Recordings from single axons of retinal ganglion cells in the rat's optic tract were used to determine whether bleaching a small area of the receptive field reduced sensitivity globally or locally, near the bleached photoreceptors. 2. When a suprathreshold test spot was alternated between two equally sensitive positions, the ganglion cell gave an approximately balanced response. The balance was upset if a small-spot bleach was selectively applied to one position. Recovery of the balanced condition was rapid. 3. Varying the duration of a constant illuminance bleach varied the duration of the imbalance following the bleach. 4. The recovery of sensitivity after small-spot bleaches was measured both at the location of the bleach and also at another location, initially equally sensitive. The recovery at the bleached location lagged recovery at the unbleached location; but even in the bleached location, the return of sensitivity was rapid. 5. Recovery of sensitivity after half-field bleaches was measured in the bleached and unbleached halves of the receptive field. Recovery in the bleached half lagged that in the unbleached half. 6. A comparison between the effects of a small-spot bleach and a half-field bleach of the same strength show that the duration of dark adaptation depends on the area of the bleach.

Full text

PDF
535

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrews D. P., Butcher A. K. Rod threshold and patterned rhodopsin bleaching; the pigment epithelium as an adaptation pool. Vision Res. 1971 Aug;11(8):761–785. doi: 10.1016/0042-6989(71)90001-0. [DOI] [PubMed] [Google Scholar]
  2. BARLOW H. B., SPARROCK J. M. THE ROLE OF AFTERIMAGES IN DARK ADAPTATION. Science. 1964 Jun 12;144(3624):1309–1314. doi: 10.1126/science.144.3624.1309. [DOI] [PubMed] [Google Scholar]
  3. Barlow H. B., Andrews D. P. The site at which rhodopsin bleaching raises the scotopic threshold. Vision Res. 1973 May;13(5):903–908. doi: 10.1016/0042-6989(73)90070-9. [DOI] [PubMed] [Google Scholar]
  4. Blakemore C. B., Rushton W. A. Dark adaptation and increment threshold in a rod monochromat. J Physiol. 1965 Dec;181(3):612–628. doi: 10.1113/jphysiol.1965.sp007786. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Blakemore C. B., Rushton W. A. The rod increment threshold during dark adaptation in normal and rod monochromat. J Physiol. 1965 Dec;181(3):629–640. doi: 10.1113/jphysiol.1965.sp007787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Block M. T. A note on the refraction and image formation of the rat's eye. Vision Res. 1969 Jun;9(6):705–711. doi: 10.1016/0042-6989(69)90127-8. [DOI] [PubMed] [Google Scholar]
  7. CONE R. A. QUANTUM RELATIONS OF THE RAT ELECTRORETINOGRAM. J Gen Physiol. 1963 Jul;46:1267–1286. doi: 10.1085/jgp.46.6.1267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cicerone C. M., Green D. G. Light adaptation within the receptive field centre of rat retinal ganglion cells. J Physiol. 1980 Apr;301:517–534. doi: 10.1113/jphysiol.1980.sp013221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. DOWLING J. E. Chemistry of visual adaptation in the rat. Nature. 1960 Oct 8;188:114–118. doi: 10.1038/188114a0. [DOI] [PubMed] [Google Scholar]
  10. DOWLING J. E. NEURAL AND PHOTOCHEMICAL MECHANISMS OF VISUAL ADAPTATION IN THE RAT. J Gen Physiol. 1963 Jul;46:1287–1301. doi: 10.1085/jgp.46.6.1287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Green D. G., Tong L., Cicerone C. M. Lateral spread of light adaptation in the rat retina. Vision Res. 1977;17(3):479–486. doi: 10.1016/0042-6989(77)90042-6. [DOI] [PubMed] [Google Scholar]
  12. LEWIS D. M. Regeneration of rhodopsin in the albino rat. J Physiol. 1957 May 23;136(3):624–631. doi: 10.1113/jphysiol.1957.sp005787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Naka K. I., Rushton W. A. S-potential and dark adaptation in fish. J Physiol. 1968 Jan;194(1):259–269. doi: 10.1113/jphysiol.1968.sp008406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Penn R. D., Hagins W. A. Kinetics of the photocurrent of retinal rods. Biophys J. 1972 Aug;12(8):1073–1094. doi: 10.1016/S0006-3495(72)86145-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Perlman I. Kinetics of bleaching and regeneration of rhodopsin in abnormal (RCS) and normal albino rats in vivo. J Physiol. 1978 May;278:141–159. doi: 10.1113/jphysiol.1978.sp012297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. RUSHTON W. A. VISUAL ADAPTATION. Proc R Soc Lond B Biol Sci. 1965 Mar 16;162:20–46. doi: 10.1098/rspb.1965.0024. [DOI] [PubMed] [Google Scholar]
  17. RUSHTON W. A., WESTHEIMER G. The effect upon the rod threshold of bleaching neighbouring rods. J Physiol. 1962 Nov;164:318–329. doi: 10.1113/jphysiol.1962.sp007024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rushton W. A. Bleached rhodopson and visual adaptation. J Physiol. 1965 Dec;181(3):645–655. doi: 10.1113/jphysiol.1965.sp007789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Steinberg R. H. The rod after-effect in S-potentials from the cat retina. Vision Res. 1969 Nov;9(11):1345–1355. doi: 10.1016/0042-6989(69)90071-6. [DOI] [PubMed] [Google Scholar]
  20. Tansley K. The regeneration of visual purple: its relation to dark adaptation and night blindness. J Physiol. 1931 Apr 24;71(4):442–458. doi: 10.1113/jphysiol.1931.sp002749. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES