Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1989 Jul;56(1):129–137. doi: 10.1016/S0006-3495(89)82658-X

Membrane structure in isolated and intact myelins.

H Inouye 1, J Karthigasan 1, D A Kirschner 1
PMCID: PMC1280458  PMID: 2752082

Abstract

The biochemical composition of myelin and the topology of its constituent lipids and proteins are typically studied using membranes that have been isolated from whole, intact tissue using procedures involving hypotonic shock and sucrose density gradient centrifugation. To what extent, however, are the structure and intermembrane interactions of isolated myelin similar to those of intact myelin? We have previously reported that intact and isolated myelins do not always show identical myelin periods, indicating a difference in membrane-membrane interactions. The present study addresses the possibility that this is due to altered membrane structure. Because x-ray scattering from isolated myelin sometimes consists of overlapping Bragg reflections or is continuous, we developed nonlinear least squares procedures for analyzing the total intensity distribution after film scaling, background subtraction, and Lorentz correction. We calculated electron density profiles of isolated myelin for comparison with membrane profiles from intact myelin. The change in the width of the extracellular space and the relative invariance of the cytoplasmic space as a function of pH and ionic strength that we previously found for intact nerve was largely paralleled by isolated myelin. There were two exceptions: isolated CNS myelin was resistant to swelling under all conditions, and isolated PNS myelin in hypotonic saline showed indefinite swelling at the extracellular apposition. However, electron density profiles of isolated myelins, calculated to 30 A resolution, did not show any major change in structure compared with intact myelin that could account for the differences in interactions.

Full text

PDF
129

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blaurock A. E. Structure of the nerve myelin membrane: proof of the low-resolution profile. J Mol Biol. 1971 Feb 28;56(1):35–52. doi: 10.1016/0022-2836(71)90082-9. [DOI] [PubMed] [Google Scholar]
  2. Caspar D. L., Kirschner D. A. Myelin membrane structure at 10 A resolution. Nat New Biol. 1971 May 12;231(19):46–52. doi: 10.1038/newbio231046a0. [DOI] [PubMed] [Google Scholar]
  3. Dermietzel R., Thürauf N., Schünke D. Cytochemical demonstration of negative surface charges in central myelin. Brain Res. 1983 Mar 7;262(2):225–232. doi: 10.1016/0006-8993(83)91012-0. [DOI] [PubMed] [Google Scholar]
  4. Evans E. A., Parsegian V. A. Thermal-mechanical fluctuations enhance repulsion between bimolecular layers. Proc Natl Acad Sci U S A. 1986 Oct;83(19):7132–7136. doi: 10.1073/pnas.83.19.7132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. FINEAN J. B., BURGE R. E. THE DETERMINATION OF THE FOURIER TRANSFORM OF THE MYELIN LAYER FROM A STUDY OF SWELLING PHENOMENA. J Mol Biol. 1963 Dec;7:672–682. doi: 10.1016/s0022-2836(63)80115-1. [DOI] [PubMed] [Google Scholar]
  6. Funk J., Welte W., Hodapp N., Wutschel I., Kreutz W. Evaluation of the electron density profile of the frog rod outer segment disc-membrane in vivo using x-ray diffraction. Biochim Biophys Acta. 1981 Jan 8;640(1):142–158. doi: 10.1016/0005-2736(81)90540-x. [DOI] [PubMed] [Google Scholar]
  7. Inouye H., Kirschner D. A. Effects of ZnCl2 on membrane interactions in myelin of normal and shiverer mice. Biochim Biophys Acta. 1984 Oct 3;776(2):197–208. doi: 10.1016/0005-2736(84)90209-8. [DOI] [PubMed] [Google Scholar]
  8. Inouye H., Kirschner D. A. Membrane interactions in nerve myelin. I. Determination of surface charge from effects of pH and ionic strength on period. Biophys J. 1988 Feb;53(2):235–245. doi: 10.1016/S0006-3495(88)83085-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Inouye H., Kirschner D. A. Membrane interactions in nerve myelin: II. Determination of surface charge from biochemical data. Biophys J. 1988 Feb;53(2):247–260. doi: 10.1016/S0006-3495(88)83086-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Karthigasan J., Kirschner D. A. Membrane interactions are altered in myelin isolated from central and peripheral nervous system tissues. J Neurochem. 1988 Jul;51(1):228–236. doi: 10.1111/j.1471-4159.1988.tb04860.x. [DOI] [PubMed] [Google Scholar]
  11. Kirschner D. A., Caspar D. L. Comparative diffraction studies on myelin membranes. Ann N Y Acad Sci. 1972 Jun 20;195:309–320. [PubMed] [Google Scholar]
  12. Lemke G. Unwrapping the genes of myelin. Neuron. 1988 Sep;1(7):535–543. doi: 10.1016/0896-6273(88)90103-1. [DOI] [PubMed] [Google Scholar]
  13. Moscarello M. A., Chia L. S., Leighton D., Absolom D. Size and surface charge properties of myelin vesicles from normal and diseased (multiple sclerosis) brain. J Neurochem. 1985 Aug;45(2):415–421. doi: 10.1111/j.1471-4159.1985.tb04003.x. [DOI] [PubMed] [Google Scholar]
  14. Norton W. T., Poduslo S. E. Myelination in rat brain: method of myelin isolation. J Neurochem. 1973 Oct;21(4):749–757. doi: 10.1111/j.1471-4159.1973.tb07519.x. [DOI] [PubMed] [Google Scholar]
  15. Pape E. H., Klott K., Kreutz W. The determination of the electron density profile of the human erythrocyte ghost membrane by small-angle x-ray diffraction. Biophys J. 1977 Aug;19(2):141–161. doi: 10.1016/S0006-3495(77)85576-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Schwartz S., Cain J. E., Dratz E. A., Blasie J. K. An analysis of lamellar x-ray diffraction from disordered membrane multilayers with application to data from retinal rod outer segments. Biophys J. 1975 Dec;15(12):1201–1233. doi: 10.1016/S0006-3495(75)85895-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sedzik J., Toews A. D., Blaurock A. E., Morell P. Resistance to disruption of multilamellar fragments of central nervous system myelin. J Neurochem. 1984 Nov;43(5):1415–1420. doi: 10.1111/j.1471-4159.1984.tb05402.x. [DOI] [PubMed] [Google Scholar]
  18. Worthington C. R., Blaurock A. E. A structural analysis of nerve myelin. Biophys J. 1969 Jul;9(7):970–990. doi: 10.1016/S0006-3495(69)86431-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Worthington C. R., McIntosh T. J. Direct determination of the lamellar structure of peripheral nerve myelin at moderate resolution (7A). Biophys J. 1974 Oct;14(10):703–729. doi: 10.1016/S0006-3495(74)85946-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Worthington C. R. The diffuse scattering problem in membrane diffraction: a solution. Biophys J. 1986 Jan;49(1):98–101. doi: 10.1016/S0006-3495(86)83608-6. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES