Abstract
The thermotropic phase behavior of a homologous series of phosphatidylcholines containing acyl chains with omega-tertiary butyl groups was studied by differential scanning calorimetry, Fourier transform infrared spectroscopy, and 31P-nuclear magnetic resonance spectroscopy (31P-NMR). Upon heating, aqueous dispersions of these lipids exhibit single transitions which have been identified as direct conversions from Lc-like gel phases to the liquid-crystalline state by both infrared and 31P-NMR spectroscopy. The calorimetric data indicate that the thermodynamic properties of the observed transition are strongly dependent upon whether the acyl chains contain an odd- or an even-number of carbon atoms. This property is manifest by a pronounced odd/even alternation in the transition temperatures and transition enthalpies of this homologous series of lipids, attributable to the fact that the odd-numbered compounds form gel phases that are more stable than those of their even-numbered counterparts. The spectroscopic data also suggest that unlike other lipids which exhibit the so-called odd/even effect, major odd/even discontinuities in the packing of the polymethylene chains are probably not the dominant factors responsible for the odd/even discontinuities exhibited by these lipids, because only subtle differences in the appropriate spectroscopic parameters were detected. Instead, the odd/even alternation in the physical properties of these lipids may be attributable to significant differences in the organization of the carbonyl ester interfacial regions of the lipid bilayer and to differences in the intermolecular interactions between the terminal t-butyl groups of the odd- and even-numbered homologues. Our results also suggest that the presence of the bulky t-butyl groups in the center of the lipid bilayer reduces the conformational disorder of the liquid-crystalline polymethylene chains, and promotes the formation of Lc-like gel phases. However, these Lc-like gel phases are considerably less ordered than those formed by saturated, straight-chain lipids.
Full text
PDF










Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Benz R., Hallmann D., Poralla K., Eibl H. Interaction of hopanoids with phosphatidylcholines containing oleic and omega-cyclohexyldodecanoic acid in lipid bilayer membranes. Chem Phys Lipids. 1983 Dec;34(1):7–24. doi: 10.1016/0009-3084(83)90056-7. [DOI] [PubMed] [Google Scholar]
- Cameron D. G., Mantsch H. H. Metastability and polymorphism in the gel phase of 1,2-dipalmitoyl-3-SN-phosphatidylcholine. A Fourier transform infrared study of the subtransition. Biophys J. 1982 May;38(2):175–184. doi: 10.1016/S0006-3495(82)84544-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Church S. E., Griffiths D. J., Lewis R. N., McElhaney R. N., Wickman H. H. X-ray structure study of thermotropic phases in isoacylphosphatidylcholine multibilayers. Biophys J. 1986 Mar;49(3):597–605. doi: 10.1016/S0006-3495(86)83687-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Füldner H. H. Characterization of a third phase transition in multilamellar dipalmitoyllecithin liposomes. Biochemistry. 1981 Sep 29;20(20):5707–5710. doi: 10.1021/bi00523a011. [DOI] [PubMed] [Google Scholar]
- Kaneda T. Fatty acids of the genus Bacillus: an example of branched-chain preference. Bacteriol Rev. 1977 Jun;41(2):391–418. doi: 10.1128/br.41.2.391-418.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaneda T. Incorporation of branched-chain C6-fatty acid isomers into the related long-chain fatty acids by growing cells of Bacillus subtilis. Biochemistry. 1971 Jan 19;10(2):340–347. doi: 10.1021/bi00778a022. [DOI] [PubMed] [Google Scholar]
- Lewis R. N., McElhaney R. N. Thermotropic phase behavior of model membranes composed of phosphatidylcholines containing iso-branched fatty acids. 1. Differential scanning calorimetric studies. Biochemistry. 1985 May 7;24(10):2431–2439. doi: 10.1021/bi00331a007. [DOI] [PubMed] [Google Scholar]
- Lewis R. N., McElhaney R. N. Thermotropic phase behavior of model membranes composed of phosphatidylcholines containing omega-cyclohexyl fatty acids. Differential scanning calorimetric and 31P NMR spectroscopic studies. Biochemistry. 1985 Aug 27;24(18):4903–4911. doi: 10.1021/bi00339a027. [DOI] [PubMed] [Google Scholar]
- Lewis R. N., Sykes B. D., McElhaney R. N. Thermotropic phase behavior of model membranes composed of phosphatidylcholines containing cis-monounsaturated acyl chain homologues of oleic acid: differential scanning calorimetric and 31P NMR spectroscopic studies. Biochemistry. 1988 Feb 9;27(3):880–887. doi: 10.1021/bi00403a007. [DOI] [PubMed] [Google Scholar]
- Lewis R. N., Sykes B. D., McElhaney R. N. Thermotropic phase behavior of model membranes composed of phosphatidylcholines containing dl-methyl anteisobranched fatty acids. 1. Differential scanning calorimetric and 31P NMR spectroscopic studies. Biochemistry. 1987 Jun 30;26(13):4036–4044. doi: 10.1021/bi00387a044. [DOI] [PubMed] [Google Scholar]
- Macdonald P. M., McDonough B., Sykes B. D., McElhaney R. N. Fluorine-19 nuclear magnetic resonance studies of lipid fatty acyl chain order and dynamics in Acholeplasma laidlawii B membranes. Effects of methyl-branch substitution and of trans unsaturation upon membrane acyl-chain orientational order. Biochemistry. 1983 Oct 25;22(22):5103–5111. doi: 10.1021/bi00291a009. [DOI] [PubMed] [Google Scholar]
- Macdonald P. M., Sykes B. D., McElhaney R. N. Fatty acyl chain structure, orientational order, and the lipid phase transition in Acholeplasma laidlawii B membranes. A review of recent 19F nuclear magnetic resonance studies. Can J Biochem Cell Biol. 1984 Nov;62(11):1134–1150. doi: 10.1139/o84-147. [DOI] [PubMed] [Google Scholar]
- Macdonald P. M., Sykes B. D., McElhaney R. N. Fluorine-19 nuclear magnetic resonance studies of lipid fatty acyl chain order and dynamics in Acholeplasma laidlawii B membranes. Gel-state disorder in the presence of methyl iso- and anteiso-branched-chain substituents. Biochemistry. 1985 May 7;24(10):2412–2419. doi: 10.1021/bi00331a004. [DOI] [PubMed] [Google Scholar]
- Mantsch H. H., Cameron D. G., Tremblay P. A., Kates M. Phosphatidylsulfocholine bilayers. An infrared spectroscopic characterization of the polymorphic phase behavior. Biochim Biophys Acta. 1982 Jul 14;689(1):63–72. doi: 10.1016/0005-2736(82)90189-4. [DOI] [PubMed] [Google Scholar]
- Mantsch H. H., Madec C., Lewis R. N., McElhaney R. N. An infrared spectroscopic study of the thermotropic phase behavior of phosphatidylcholines containing omega-cyclohexyl fatty acyl chains. Biochim Biophys Acta. 1989 Mar 27;980(1):42–49. doi: 10.1016/0005-2736(89)90198-3. [DOI] [PubMed] [Google Scholar]
- Mantsch H. H., Madec C., Lewis R. N., McElhaney R. N. Thermotropic phase behavior of model membranes composed of phosphatidylcholines containing dl-methyl anteisobranched fatty acids. 2. An infrared spectroscopy study. Biochemistry. 1987 Jun 30;26(13):4045–4049. doi: 10.1021/bi00387a045. [DOI] [PubMed] [Google Scholar]
- Mantsch H. H., Madec C., Lewis R. N., McElhaney R. N. Thermotropic phase behavior of model membranes composed of phosphatidylcholines containing iso-branched fatty acids. 2. Infrared and 31P NMR spectroscopic studies. Biochemistry. 1985 May 7;24(10):2440–2446. doi: 10.1021/bi00331a008. [DOI] [PubMed] [Google Scholar]
- Mushayakarara E., Albon N., Levin I. W. Effect of water on the molecular structure of a phosphatidylcholine hydrate. Raman spectroscopic analysis of the phosphate, carbonyl and carbon-hydrogen stretching mode regions of 1,2-dipalmitoylphosphatidylcholine dihydrate. Biochim Biophys Acta. 1982 Apr 7;686(2):153–159. doi: 10.1016/0005-2736(82)90107-9. [DOI] [PubMed] [Google Scholar]
- Pearson R. H., Pascher I. The molecular structure of lecithin dihydrate. Nature. 1979 Oct 11;281(5731):499–501. doi: 10.1038/281499a0. [DOI] [PubMed] [Google Scholar]
- Seelig J. 31P nuclear magnetic resonance and the head group structure of phospholipids in membranes. Biochim Biophys Acta. 1978 Jul 31;515(2):105–140. doi: 10.1016/0304-4157(78)90001-1. [DOI] [PubMed] [Google Scholar]
- Seguin C., Lewis R. N., Mantsch H. H., McElhaney R. N. Calorimetric studies of the thermotropic phase behavior of cells, membranes and lipids from fatty acid-homogeneous Acholeplasma laidlawii B. Isr J Med Sci. 1987 May;23(5):403–407. [PubMed] [Google Scholar]
- Sunamoto J., Iwamoto K., Inoue K., Endo T., Nojima S. Liposomal membranes. XI. A suggestion to structural characteristics of acido-thermophilic bacterial membranes. Biochim Biophys Acta. 1982 Mar 8;685(3):283–288. doi: 10.1016/0005-2736(82)90069-4. [DOI] [PubMed] [Google Scholar]
- Suzuki A., Cadenhead D. A. Mixed monolayers of straight-chain/branched-chain phospholipids. I. Mixed monolayers of distearoyl phosphatidylcholine and diisoeicosanoyl phosphatidylcholine. Chem Phys Lipids. 1985 Apr;37(1):69–82. doi: 10.1016/0009-3084(85)90075-1. [DOI] [PubMed] [Google Scholar]
- Yang C. P., Wiener M. C., Lewis R. N., McElhaney R. N., Nagle J. F. Dilatometric studies of isobranched phosphatidylcholines. Biochim Biophys Acta. 1986 Dec 1;863(1):33–44. doi: 10.1016/0005-2736(86)90384-6. [DOI] [PubMed] [Google Scholar]
