Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1979 Sep;294:223–238. doi: 10.1113/jphysiol.1979.sp012927

Renal calcium and magnesium excretion during vasopressin administration into sheep with acid or alkaline urine.

A M Beal
PMCID: PMC1280554  PMID: 41939

Abstract

1. The proposition that changes in renal calcium excretion during vasopressin administration are positively correlated with concurrent changes in urine hydrogen ion concentration was tested by administration of vasopressin into twelve conscious diuresing sheep receiving either alkalinizing or acidifying infusions. 2. Vasopressin-induced antidiuresis in sheep with alkaline urine was associated with significant increases in urinary pH and decreases in the rate of calcium excretion whereas antidiuresis in sheep with acid urine was associated with significant decreases in urinary pH and no consistent effect on calcium excretion. 3. Magnesium excretion increased during vasopressin administration in most experiments regardless of urinary pH changes. 4. Vasopressin administration did not significantly alter the rate of excretion of sodium, potassium, chloride and phosphate or the rates of sodium, potassium, chloride, inulin, para-aminohippurate and osmolal clearance in sheep with either acid or alkaline urine. Potassium excretion and clearance in sheep with alkaline ruine was higher than that of sheep with acid urine during vasopressin infusion. 5. The results support the hypothesis that changes in renal tubular hydrogen ion concentration or bicarbonate concentration caused by water reabsorption from the collecting duct and possibly the late distal tubule could be part of the explanation for changes in renal calcium excretion which occur during vasopressin-induced antidiuresis.

Full text

PDF
223

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baginski E. S., Foà P. P., Zak B. Microdetermination of inorganic phosphate, phospholipids, and total phosphate in biologic materials. Clin Chem. 1967 Apr;13(4):326–332. [PubMed] [Google Scholar]
  2. Beal A. M., Budtz-Olsen O. E., Clark R. C., Cross R. B., French T. J. Renal and salivary responses to infusion of potassium chloride, bicarbonate and phosphate in Merino sheep. Q J Exp Physiol Cogn Med Sci. 1973 Jul;58(3):251–265. doi: 10.1113/expphysiol.1973.sp002213. [DOI] [PubMed] [Google Scholar]
  3. Beal A. M., Budtz-Olsen O. E., Clark R. C., Cross R. B., French T. J. Renal function and salivary potassium secretion during potassium chloride infusion into sodium-deficient sheep. Q J Exp Physiol Cogn Med Sci. 1974 Apr;59(2):141–151. doi: 10.1113/expphysiol.1974.sp002253. [DOI] [PubMed] [Google Scholar]
  4. Beal A. M., Clark R. C., Cross R. B., French T. J. The effect of vasopressin upon the excretion of calcium by the sheep. Q J Exp Physiol Cogn Med Sci. 1976 Apr;61(2):121–125. doi: 10.1113/expphysiol.1976.sp002342. [DOI] [PubMed] [Google Scholar]
  5. Beal A. M. The effect of vasopressin on renal calcium excretion in sheep: a possible explanation [proceedings]. J Physiol. 1976 Dec;263(2):253P–254P. [PubMed] [Google Scholar]
  6. Bennett C. M., Brenner B. M., Berliner R. W. Micropuncture study of nephron function in the rhesus monkey. J Clin Invest. 1968 Jan;47(1):203–216. doi: 10.1172/JCI105710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. CLAPP J. R., WATSON J. F., BERLINER R. W. OSMOLALITY, BICARBONATE CONCENTRATION, AND WATER REABSORPTION IN PROXIMAL TUBULE OF THE DOG NEPHRON. Am J Physiol. 1963 Aug;205:273–280. doi: 10.1152/ajplegacy.1963.205.2.273. [DOI] [PubMed] [Google Scholar]
  8. Clapp J. R., Robinson R. R. Osmolality of distal tubular fluid in the dog. J Clin Invest. 1966 Dec;45(12):1847–1853. doi: 10.1172/JCI105488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Clark R. C., French T. J., Beal A. M., Cross R. B., Budtz-Olsen O. E. The acute effects of intravenous infusion of parathyroid hormone on urine, plasma and saliva in the sheep. Q J Exp Physiol Cogn Med Sci. 1975 Apr;60(2):95–106. doi: 10.1113/expphysiol.1975.sp002307. [DOI] [PubMed] [Google Scholar]
  10. DARMADY E. M., DURANT J., MATTHEWS E. R., STRANACK F. Location of 131 I pitressin in the kidney by autoradiography. Clin Sci. 1960 May;19:229–241. [PubMed] [Google Scholar]
  11. DICKER S. E., EGGLETON M. G. Renal excretion of hyaluronidase and calcium in man during the antidiuretic action of vasopressins and some analogues. J Physiol. 1961 Jul;157:351–362. doi: 10.1113/jphysiol.1961.sp006727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dawborn J. K. Application of Heyrovsky's inulin method to automatic analysis. Clin Chim Acta. 1965 Jul;12(1):63–66. doi: 10.1016/0009-8981(65)90109-9. [DOI] [PubMed] [Google Scholar]
  13. Farquharson R. F., Salter W. T., Tibbetts D. M., Aub J. C. STUDIES OF CALCIUM AND PHOSPHORUS METABOLISM: XII. The Effect of the Ingestion of Acid-producing Substances. J Clin Invest. 1931 Jun;10(2):221–249. doi: 10.1172/JCI100347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. GERTZ K. H., KENNEDY G. C., ULLRICH K. J. MIKROPUNKTIONSUNTERSUCHUNGEN UEBER DIE FLUESSIGKEITSRUECKRESORPTION AUS DEN EINZELNEN TUBULUSABSCHNITTEN BEI WASSERDIURESE (DIABETES INSIPIDUS) Pflugers Arch Gesamte Physiol Menschen Tiere. 1964;278:513–519. [PubMed] [Google Scholar]
  15. GOTTSCHALK C. W., MYLLE M. Micropuncture study of the mammalian urinary concentrating mechanism: evidence for the countercurrent hypothesis. Am J Physiol. 1959 Apr;196(4):927–936. doi: 10.1152/ajplegacy.1959.196.4.927. [DOI] [PubMed] [Google Scholar]
  16. HARVEY R. B., BROTHERS A. J. Renal extraction of para-aminohippurate and creatinine measured by continuous in vivo sampling of arterial and renal-vein blood. Ann N Y Acad Sci. 1962 Oct 31;102:46–54. doi: 10.1111/j.1749-6632.1962.tb13624.x. [DOI] [PubMed] [Google Scholar]
  17. HEYROVSKY A. A new method for the determination of inulin in plasma and urine. Clin Chim Acta. 1956 Sep-Oct;1(5):470–474. doi: 10.1016/0009-8981(56)90020-1. [DOI] [PubMed] [Google Scholar]
  18. Kühn E. Influence de l'antidiurèse obtenue par infusion de l'arginine-vasopressine (AVP) de la lysine-vasopressine (LVP) et de l'ocytocine sur l'excrétion du calcium chez la brebis. Arch Int Pharmacodyn Ther. 1966 Apr;160(2):480–484. [PubMed] [Google Scholar]
  19. Lemann J., Jr, Litzow J. R., Lennon E. J. The effects of chronic acid loads in normal man: further evidence for the participation of bone mineral in the defense against chronic metabolic acidosis. J Clin Invest. 1966 Oct;45(10):1608–1614. doi: 10.1172/JCI105467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Morgan T., Berliner R. W. Permeability of the loop of Henle, vasa recta, and collecting duct to water, urea, and sodium. Am J Physiol. 1968 Jul;215(1):108–115. doi: 10.1152/ajplegacy.1968.215.1.108. [DOI] [PubMed] [Google Scholar]
  21. NIELSEN B. CORRELATION BETWEEN ANTIDIURETIC HORMONE EFFECT AND THE RENAL EXCRETION OF MAGNESIUM AND CALCIUM IN MAN. Acta Endocrinol (Copenh) 1964 Jan;45:151–160. doi: 10.1530/acta.0.0450151. [DOI] [PubMed] [Google Scholar]
  22. SELDINGER S. I. Catheter replacement of the needle in percutaneous arteriography; a new technique. Acta radiol. 1953 May;39(5):368–376. doi: 10.3109/00016925309136722. [DOI] [PubMed] [Google Scholar]
  23. Sutton R. A., Dirks J. H. The renal excretion of calcium: a review of micropuncture data. Can J Physiol Pharmacol. 1975 Dec;53(6):979–988. doi: 10.1139/y75-136. [DOI] [PubMed] [Google Scholar]
  24. Sutton R. A., Wong N. L., Dirks J. H. Effects of parathyroid hormone on sodium and calcium transport in the dog nephron. Clin Sci Mol Med. 1976 Oct;51(4):345–351. doi: 10.1042/cs0510345. [DOI] [PubMed] [Google Scholar]
  25. THORN N. A. An effect of antidiuretic hormone on renal excretion of calcium in dogs. Dan Med Bull. 1960 Jul;7:110–112. [PubMed] [Google Scholar]
  26. THORN N. A. Correlation between antidiuretic hormone effect and changes in renal excretion of calcium in rats and dogs. Acta Endocrinol (Copenh) 1961 Dec;38:563–570. doi: 10.1530/acta.0.0380563. [DOI] [PubMed] [Google Scholar]
  27. ULLRICH K. J., RUMRICH G., FUCHS G. WASSERPERMEABILITAET UND TRANDTUBULAERER WASSERFLUSS CORTICALER NEPHRONABSCHNITTE BEI VERSCHIEDENEN DIURESEZUSTAENDEN. Pflugers Arch Gesamte Physiol Menschen Tiere. 1964 Jul 1;280:99–119. [PubMed] [Google Scholar]
  28. WALSER M. Calcium clearance as a function of sodium clearance in the dog. Am J Physiol. 1961 May;200:1099–1104. doi: 10.1152/ajplegacy.1961.200.5.1099. [DOI] [PubMed] [Google Scholar]
  29. WILLIAMSON B. J., FREEMAN S. Effects of acute changes in acid-base balance on renal calcium excretion in dogs. Am J Physiol. 1957 Nov;191(2):384–387. doi: 10.1152/ajplegacy.1957.191.2.384. [DOI] [PubMed] [Google Scholar]
  30. WIRZ H. Der osmotische Druck in den corticalen Tubuli der Rattenniere. Helv Physiol Pharmacol Acta. 1956;14(3):353–362. [PubMed] [Google Scholar]
  31. de Rouffignac C., Lechène C., Guinnebault M., Morel F. Etude par microponction de l'élaboration de l'urine. 3. Chez le mérion non diurétique et en diurèse par le mannitol. Nephron. 1969;6(6):643–666. doi: 10.1159/000179765. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES