Abstract
1. Single unit activities were recorded from the neurones in the preoptic area and anterior hypothalamus of developing new-born rats (aged 1-24 days old) during thermal stimulation of the brain. During the first 2 weeks of life, about 80% of these neurones had low spontaneous firing rates between 0.1 and 5 impulses/sec at 38 degrees C hypothalamic temperature (Thyp). 2. Out of 640 units studied, 118 units increased the firing rate upon elevation of Thyp (warm-units) and fourteen showed the opposite type of response to temperature changes (cold-units). Warm-units were found in the rats of all the age span studied and cold-units were recorded in the rats more than 8 days old. 3. Thermal coefficients of warm-units and cold-units varied between +0.11 and +2.47 and between -0.10 and -0.49 impulses/sec, degrees C, respectively. Number of warm-units with higher rates of firing and greater thermal coefficients, comparable to those of warm-units in the adult, gradually increased with growth. The thermal responsiveness of warm-units, when expressed by Q10, are already high even in the immediate neonatal period. Their Q10 values were in the range between 2 and 38.5 (mean 6.4). 4. Units responding to extrahypothalamic temperatures were only found in the rats more than 14 days old. 5. All the six warm-units tested increased the firing rates following subcutaneous injections of capsaicin, while the majority of thermo-unresponsive units were not affected by this drug. 6. It is suggested that thermo-responsive neurones in the preoptic area and anterior hypothalamus in the new-born rat have attained some degree of electrophysiological maturity, despite their slowly firing characteristics.
Full text
PDF![541](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5c6/1280572/78098da9159c/jphysiol00866-0538.png)
![542](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5c6/1280572/eb328e2de65e/jphysiol00866-0539.png)
![543](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5c6/1280572/518ca34b2500/jphysiol00866-0540.png)
![544](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5c6/1280572/734d6a007143/jphysiol00866-0541.png)
![545](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5c6/1280572/2a06d7491761/jphysiol00866-0542.png)
![546](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5c6/1280572/4ad2aa9a4342/jphysiol00866-0543.png)
![547](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5c6/1280572/eaa0a21b329d/jphysiol00866-0544.png)
![548](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5c6/1280572/8d8992322a08/jphysiol00866-0545.png)
![549](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5c6/1280572/1aacefceae56/jphysiol00866-0546.png)
![550](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5c6/1280572/068cb3067bf1/jphysiol00866-0547.png)
![551](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5c6/1280572/60184f76fbea/jphysiol00866-0548.png)
![552](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5c6/1280572/7b3b427ec0e5/jphysiol00866-0549.png)
![553](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5c6/1280572/3ed0f7e02b6e/jphysiol00866-0550.png)
![554](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5c6/1280572/6808e931464e/jphysiol00866-0551.png)
![555](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5c6/1280572/26a80347bd6f/jphysiol00866-0552.png)
![556](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5c6/1280572/5818e747d660/jphysiol00866-0553.png)
![557](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5c6/1280572/3b0cd5387bfd/jphysiol00866-0554.png)
![558](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5c6/1280572/fb27132c50bd/jphysiol00866-0555.png)
![559](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5c6/1280572/a9ca9ee6cc40/jphysiol00866-0556.png)
![560](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5c6/1280572/6bd53a876c85/jphysiol00866-0557.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Almli C. R., McMullen N. T., Golden G. T. Infant rats: hypothalamic unit activity. Brain Res Bull. 1976 Nov-Dec;1(6):543–552. doi: 10.1016/0361-9230(76)90081-2. [DOI] [PubMed] [Google Scholar]
- Boulant J. A., Bignall K. E. Determinants of hypothalamic neuronal thermosensitivity in ground squirrels and rats. Am J Physiol. 1973 Aug;225(2):306–310. doi: 10.1152/ajplegacy.1973.225.2.306. [DOI] [PubMed] [Google Scholar]
- Boulant J. A., Hardy J. D. The effect of spinal and skin temperatures on the firing rate and thermosensitivity of preoptic neurones. J Physiol. 1974 Aug;240(3):639–660. doi: 10.1113/jphysiol.1974.sp010627. [DOI] [PMC free article] [PubMed] [Google Scholar]
- COGGESHALL R. E. A STUDY OF DIENCEPHALIC DEVELOPMENT IN THE ALBINO RAT. J Comp Neurol. 1964 Apr;122:241–269. doi: 10.1002/cne.901220208. [DOI] [PubMed] [Google Scholar]
- Cabanac M., Hammel T., Hardy J. D. Tiliqua scincoides: temperature-sensitive units in lizard brain. Science. 1967 Nov;158(3804):1050–1051. doi: 10.1126/science.158.3804.1050. [DOI] [PubMed] [Google Scholar]
- Conklin P., Heggeness F. W. Maturation of tempeature homeostasis in the rat. Am J Physiol. 1971 Feb;220(2):333–336. doi: 10.1152/ajplegacy.1971.220.2.333. [DOI] [PubMed] [Google Scholar]
- Deza L., Eidelberg E. Development of cortical electrical activity in the rat. Exp Neurol. 1967 Apr;17(4):425–438. doi: 10.1016/0014-4886(67)90129-x. [DOI] [PubMed] [Google Scholar]
- Eisenman J. S., Jackson D. C. Thermal response patterns of septal and preoptic neurons in cats. Exp Neurol. 1967 Sep;19(1):33–45. doi: 10.1016/0014-4886(67)90005-2. [DOI] [PubMed] [Google Scholar]
- Fowler S. J., Kellogg C. Ontogeny of thermoregulatory mechanisms in the rat. J Comp Physiol Psychol. 1975 Sep;89(7):738–746. doi: 10.1037/h0077037. [DOI] [PubMed] [Google Scholar]
- Guieu J. D., Hardy J. D. Effects of heating and cooling of the spinal cord on preoptic unit activity. J Appl Physiol. 1970 Nov;29(5):675–683. doi: 10.1152/jappl.1970.29.5.675. [DOI] [PubMed] [Google Scholar]
- HARDY J. D., HELLON R. F., SUTHERLAND K. TEMPERATURE-SENSITIVE NEURONES IN THE DOG'S HYPOTHALAMUS. J Physiol. 1964 Dec;175:242–253. doi: 10.1113/jphysiol.1964.sp007515. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hellon R. F. The marking of electrode tip positions in nervous tissue. J Physiol. 1971;214 (Suppl):12P–12P. [PubMed] [Google Scholar]
- Henderston T. C., Luckwill R. G., Nayernouri T. Single unit responses to temperature change in the brain of newborn rabbits. Int J Biometeorol. 1971 Dec;15(2):309–312. doi: 10.1007/BF01803917. [DOI] [PubMed] [Google Scholar]
- Hori T., Harada Y. Midbrain neuronal responses to local and spinal cord temperatures. Am J Physiol. 1976 Nov;231(5 Pt 1):1573–1578. doi: 10.1152/ajplegacy.1976.231.5.1573. [DOI] [PubMed] [Google Scholar]
- Hori T., Nakayama T. Effects of biogenic amines on central thermoresponsive neurones in the rabbit. J Physiol. 1973 Jul;232(1):71–85. doi: 10.1113/jphysiol.1973.sp010257. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huttenlocher P. R. Development of cortical neuronal activity in the neonatal cat. Exp Neurol. 1967 Mar;17(3):247–262. doi: 10.1016/0014-4886(67)90104-5. [DOI] [PubMed] [Google Scholar]
- Hyvärinen J. Analysis of spontaneous spike potential activity in developing rabbit diencephalon. Acta Physiol Scand Suppl. 1966;278:1–67. [PubMed] [Google Scholar]
- Ifft J. D. An autoradiographic study of the time of final division of neurons in rat hypothalamic nuclei. J Comp Neurol. 1972 Feb;144(2):193–204. doi: 10.1002/cne.901440204. [DOI] [PubMed] [Google Scholar]
- Jahns R., Werner J. Special aspects of firing rates and thermosensitivity of preoptic neurons. Exp Brain Res. 1974;21(1):107–112. doi: 10.1007/BF00234261. [DOI] [PubMed] [Google Scholar]
- Jancsó-Gábor A., Szolcsányi J., Jancsó N. Irreversible impairment of thermoregulation induced by capsaicin and similar pungent substances in rats and guinea-pigs. J Physiol. 1970 Mar;206(3):495–507. doi: 10.1113/jphysiol.1970.sp009027. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jancsó-Gábor A., Szolcsányi J., Jancsó N. Stimulation and desensitization of the hypothalamic heat-sensitive structures by capsaicin in rats. J Physiol. 1970 Jun;208(2):449–459. doi: 10.1113/jphysiol.1970.sp009130. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Loizou L. A. The postnatal ontogeny of monoamine-containing neurones in the central nervous system of the albino rat. Brain Res. 1972 May 26;40(2):395–418. doi: 10.1016/0006-8993(72)90142-4. [DOI] [PubMed] [Google Scholar]
- Reier P. J., Cullen M. J., Froelich J. S., Rothchild I. The ultrastructure of the developing medial preoptic nucleus in the postnatal rat. Brain Res. 1977 Feb 25;122(3):415–436. doi: 10.1016/0006-8993(77)90454-1. [DOI] [PubMed] [Google Scholar]
- TAYLOR P. M. Oxygen consumption in new-born rats. J Physiol. 1960 Nov;154:153–168. doi: 10.1113/jphysiol.1960.sp006570. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thompson G. E., Moore R. E. A study of newborn rats exposed to the cold. Can J Physiol Pharmacol. 1968 Nov;46(6):865–871. doi: 10.1139/y68-135. [DOI] [PubMed] [Google Scholar]
- Torda C. Bioelectric observations on adult and newborn hypothalamic dendrites. J Neurosci Res. 1976;2(1):21–29. doi: 10.1002/jnr.490020104. [DOI] [PubMed] [Google Scholar]