Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1979 Sep;294:627–634. doi: 10.1113/jphysiol.1979.sp012950

Intercellular spaces in chemically fixed corneal endothelia are related to solute pump activity not to solvent coupling.

S Hodson, K R Mayes
PMCID: PMC1280577  PMID: 512962

Abstract

1. Stereological analyses of the lateral intercellular spaces in the endothelium of rabbit corneas after chemical fixation were undertaken. 2. Immediately preceding chemical fixation the endothelia were in one of four transport modes: (a) bicarbonate pump activated and no coupled solvent flux, (b) bicarbonate pump activated and, coupled to it, a solvent flux, (c) no fluxes across the endothelia and (d) passive fluid fluxes across the endothelia. 3. In each transport mode, the intercellular spaces were measured after immersion in a series of fixatives in which the concentration of buffer (sodium cacodylate) was increased. 4. Lateral intercellular spaces were a function of buffer concentration in the fixative and activity of the bicarbonate pump. They were not a function of either solvent coupling or passive solvent flow. 5. It is concluded that the characteristic changes of lateral intercellular spaces, when transport is inhibited, do not indicate the site of local osmotic coupling.

Full text

PDF
627

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. DIAMOND J. M. THE MECHANISM OF ISOTONIC WATER TRANSPORT. J Gen Physiol. 1964 Sep;48:15–42. doi: 10.1085/jgp.48.1.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Diamond J. M., Bossert W. H. Functional consequences of ultrastructural geometry in "backwards" fluid-transporting epithelia. J Cell Biol. 1968 Jun;37(3):694–702. doi: 10.1083/jcb.37.3.694. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Diamond J. M., Bossert W. H. Standing-gradient osmotic flow. A mechanism for coupling of water and solute transport in epithelia. J Gen Physiol. 1967 Sep;50(8):2061–2083. doi: 10.1085/jgp.50.8.2061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Diamond J. M., Tormey J. M. Role of long extracellular channels in fluid transport across epithelia. Nature. 1966 May 21;210(5038):817–820. doi: 10.1038/210817a0. [DOI] [PubMed] [Google Scholar]
  5. Dikstein S., Maurice D. M. The metabolic basis to the fluid pump in the cornea. J Physiol. 1972 Feb;221(1):29–41. doi: 10.1113/jphysiol.1972.sp009736. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hill A. E. Solute-solvent coupling in epithelia: a critical examination of the standing-gradient osmotic flow theory. Proc R Soc Lond B Biol Sci. 1975 Jun 20;190(1098):99–114. doi: 10.1098/rspb.1975.0081. [DOI] [PubMed] [Google Scholar]
  7. Hodson S. A. Light-microscopic radioautography utilizing araldite sections. J Microsc. 1969;89(1):113–120. doi: 10.1111/j.1365-2818.1969.tb00655.x. [DOI] [PubMed] [Google Scholar]
  8. Hodson S. A., Mayes K. R. Intercellular spaces and coupled water transport in the rabbit cornea [proceedings]. J Physiol. 1978 Nov;284:146P–146P. [PubMed] [Google Scholar]
  9. Hodson S. Evidence for a bicarbonate-dependent sodium pump in corneal endothelium. Exp Eye Res. 1971 Jan;11(1):20–29. doi: 10.1016/s0014-4835(71)80060-x. [DOI] [PubMed] [Google Scholar]
  10. Hodson S. Inadequacy of aldehyde fixatives in preserving the ultrastructure of corneal endothelium in rabbit and monkey. Exp Eye Res. 1968 Apr;7(2):221–224. doi: 10.1016/s0014-4835(68)80070-3. [DOI] [PubMed] [Google Scholar]
  11. Hodson S., Miller F. The bicarbonate ion pump in the endothelium which regulates the hydration of rabbit cornea. J Physiol. 1976 Dec;263(3):563–577. doi: 10.1113/jphysiol.1976.sp011645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hodson S. Observations on the posterior membrane of the corneal endothelium. Exp Eye Res. 1969 Apr;8(2):99–101. doi: 10.1016/s0014-4835(69)80018-7. [DOI] [PubMed] [Google Scholar]
  13. Hodson S. The regulation of corneal hydration by a salt pump requiring the presence of sodium and bicarbonate ions. J Physiol. 1974 Jan;236(2):271–302. doi: 10.1113/jphysiol.1974.sp010435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hodson S. Why the cornea swells. J Theor Biol. 1971 Dec;33(3):419–427. doi: 10.1016/0022-5193(71)90090-7. [DOI] [PubMed] [Google Scholar]
  15. Hull D. S., Green K., Boyd M., Wynn H. R. Corneal endothelium bicarbonate transport and the effect of carbonic anhydrase inhibitors on endothelial permeability and fluxes and corneal thickness. Invest Ophthalmol Vis Sci. 1977 Oct;16(10):883–892. [PubMed] [Google Scholar]
  16. Maurice D. M. The location of the fluid pump in the cornea. J Physiol. 1972 Feb;221(1):43–54. doi: 10.1113/jphysiol.1972.sp009737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mayes K. R., Graham M. V., Hodson S. The deleterious effects of exogenous bicarbonate on the rabbit cornea undergoing prolonged refrigerated storage. Exp Eye Res. 1978 May;26(5):555–560. doi: 10.1016/0014-4835(78)90065-9. [DOI] [PubMed] [Google Scholar]
  18. Mayes K. R., Hodson S. Local osmotic coupling to the active trans-endothelial bicarbonate flux in the rabbit cornea. Biochim Biophys Acta. 1978 Dec 19;514(2):286–293. doi: 10.1016/0005-2736(78)90299-7. [DOI] [PubMed] [Google Scholar]
  19. Mills J. W., DiBona D. R. Distribution of Na+ pump sites in the frog gallbladder. Nature. 1978 Jan 19;271(5642):273–275. doi: 10.1038/271273a0. [DOI] [PubMed] [Google Scholar]
  20. Tormey J. M., Diamond J. M. The ultrastructural route of fluid transport in rabbit gall bladder. J Gen Physiol. 1967 Sep;50(8):2031–2060. doi: 10.1085/jgp.50.8.2031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Weibel E. R., Kistler G. S., Scherle W. F. Practical stereological methods for morphometric cytology. J Cell Biol. 1966 Jul;30(1):23–38. doi: 10.1083/jcb.30.1.23. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES