Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1989 Nov;56(5):817–828. doi: 10.1016/S0006-3495(89)82728-6

Adenosine diphosphate-induced aggregation of human platelets in flow through tubes. I. Measurement of concentration and size of single platelets and aggregates.

D N Bell 1, S Spain 1, H L Goldsmith 1
PMCID: PMC1280581  PMID: 2605298

Abstract

A double infusion flow system and particle sizing technique were developed to study the effect of time and shear rate on adenosine diphosphate-induced platelet aggregation in Poiseuille flow. Citrated platelet-rich plasma, PRP, and 2 microM ADP were simultaneously infused into a 40-microliters cylindrical mixing chamber at a fixed flow ratio, PRP/ADP = 9:1. After rapid mixing by a rotating magnetic stirbar, the platelet suspension flowed through 1.19 or 0.76 mm i.d. polyethylene tubing for mean transit times, t, from 0.1 to 86 s, over a range of mean tube shear rate, G, from 41.9 to 1,000 s-1. Known volumes of suspension were collected into 0.5% buffered glutaraldehyde, and all particles in the volume range 1-10(5) microns 3 were counted and sized using a model ZM particle counter (Coulter Electronics Inc., Hialeah, FL) and a logarithmic amplifier. The decrease in the single platelet concentration served as an overall index of aggregation. The decrease in the total particle concentration was used to calculate the collision capture efficiency during the early stages of aggregation, and aggregate growth was followed by changes in the volume fraction of particles of successively increasing size. Preliminary results demonstrate that both collision efficiency and particle volume fraction reveal important aspects of the aggregation process not indicated by changes in the single platelet concentration alone.

Full text

PDF
817

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BAHR G. F., ZEITLER E. THE DETERMINATION OF THE DRY MASS IN POPULATIONS OF ISOLATED PARTICLES. Lab Invest. 1965 Jun;14:955–977. [PubMed] [Google Scholar]
  2. BORN G. V. Aggregation of blood platelets by adenosine diphosphate and its reversal. Nature. 1962 Jun 9;194:927–929. doi: 10.1038/194927b0. [DOI] [PubMed] [Google Scholar]
  3. Bell D. N., Goldsmith H. L. Platelet aggregation in poiseuille flow: II. Effect of shear rate. Microvasc Res. 1984 May;27(3):316–330. doi: 10.1016/0026-2862(84)90063-3. [DOI] [PubMed] [Google Scholar]
  4. Bell D. N., Spain S., Goldsmith H. L. Adenosine diphosphate-induced aggregation of human platelets in flow through tubes. II. Effect of shear rate, donor sex, and ADP concentration. Biophys J. 1989 Nov;56(5):829–843. doi: 10.1016/S0006-3495(89)82729-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bell D. N., Teirlinck H. C., Goldsmith H. L. Platelet aggregation in poiseuille flow: I. A double infusion technique. Microvasc Res. 1984 May;27(3):297–315. doi: 10.1016/0026-2862(84)90062-1. [DOI] [PubMed] [Google Scholar]
  6. Belval T. K., Hellums J. D. Analysis of shear-induced platelet aggregation with population balance mathematics. Biophys J. 1986 Sep;50(3):479–487. doi: 10.1016/S0006-3495(86)83485-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Belval T., Hellums J. D., Solis R. T. The kinetics of platelet aggregation induced by fluid-shearing stress. Microvasc Res. 1984 Nov;28(3):279–288. doi: 10.1016/0026-2862(84)90001-3. [DOI] [PubMed] [Google Scholar]
  8. Born G. V., Hume M. Effects of the numbers and sizes of platelet aggregates on the optical density of plasma. Nature. 1967 Sep 2;215(5105):1027–1029. doi: 10.1038/2151027a0. [DOI] [PubMed] [Google Scholar]
  9. Chang H. N., Robertson C. R. Platelet aggregation by laminar shear and Brownian motion. Ann Biomed Eng. 1976 Jun;4(2):151–183. doi: 10.1007/BF02363645. [DOI] [PubMed] [Google Scholar]
  10. Frojmovic M. M., Newton M., Goldsmith H. L. The microrheology of mammalian platelets: studies of rheo-optical transients and flow in tubes. Microvasc Res. 1976 Mar;11(2):203–215. doi: 10.1016/0026-2862(76)90052-2. [DOI] [PubMed] [Google Scholar]
  11. Gear A. R., Lambrecht J. K. Reduction in single platelets during primary and secondary aggregation. Thromb Haemost. 1981 Jun 30;45(3):298–298. [PubMed] [Google Scholar]
  12. Gear A. R. Rapid reactions of platelets studied by a quenched-flow approach: aggregation kinetics. J Lab Clin Med. 1982 Dec;100(6):866–886. [PubMed] [Google Scholar]
  13. Goldsmith H. L., Turitto V. T. Rheological aspects of thrombosis and haemostasis: basic principles and applications. ICTH-Report--Subcommittee on Rheology of the International Committee on Thrombosis and Haemostasis. Thromb Haemost. 1986 Jun 30;55(3):415–435. [PubMed] [Google Scholar]
  14. Gregg E. C., Steidley K. D. Electrical counting and sizing of mammalian cells in suspension. Biophys J. 1965 Jul;5(4):393–405. doi: 10.1016/S0006-3495(65)86724-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Grover N. B., Naaman J., Ben-Sasson S., Doljanski F. Electrical sizing of particles in suspensions. I. Theory. Biophys J. 1969 Nov;9(11):1398–1414. doi: 10.1016/S0006-3495(69)86461-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Grover N. B., Naaman J., Ben-Sasson S., Doljanski F., Nadav E. Electrical sizing of particles in suspensions. II. Experiments with rigid spheres. Biophys J. 1969 Nov;9(11):1415–1425. doi: 10.1016/S0006-3495(69)86462-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Holme S., Murphy S. Coulter Counter and light transmission studies of platelets exposed to low temperature, ADP, EDTA, and storage at 22 degrees. J Lab Clin Med. 1980 Sep;96(3):480–493. [PubMed] [Google Scholar]
  18. Hurley J. Sizing particles with a Coulter counter. Biophys J. 1970 Jan;10(1):74–79. doi: 10.1016/S0006-3495(70)86286-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kachel V., Metzger H., Ruhenstroth-Bauer G. Der Einfluss der Partikeldurchtrittsbahn auf die Volumenverteilungskurven nach dem Coulter-Verfahren. Z Gesamte Exp Med. 1970;153(4):331–347. [PubMed] [Google Scholar]
  20. Mundschenk D. D., Connelly D. P., White J. G., Brunning R. D. An improved technique for the electronic measurement of platelet size and shape. J Lab Clin Med. 1976 Aug;88(2):301–315. [PubMed] [Google Scholar]
  21. Nichols A. R., Bosmann H. B. Platelet aggregation: newly quantified using non-empirical parameters. Thromb Haemost. 1979 Aug 31;42(2):679–693. [PubMed] [Google Scholar]
  22. Paulus J. M. Platelet size in man. Blood. 1975 Sep;46(3):321–336. [PubMed] [Google Scholar]
  23. Shank B. B., Adams R. B., Steidley K. D., Murphy J. R. A physical explantation of the bimodal distribution obtained by electronic sizing of erythrocytes. J Lab Clin Med. 1969 Oct;74(4):630–641. [PubMed] [Google Scholar]
  24. Thom R., Hampe A., Sauerbrey G. Die elektronische Volumenbestimmung von Blutkörperchen und ihre Fehlerquellen. Z Gesamte Exp Med. 1969 Dec 31;151(4):331–349. [PubMed] [Google Scholar]
  25. Young I. T. Proof without prejudice: use of the Kolmogorov-Smirnov test for the analysis of histograms from flow systems and other sources. J Histochem Cytochem. 1977 Jul;25(7):935–941. doi: 10.1177/25.7.894009. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES