Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1989 Nov;56(5):979–993. doi: 10.1016/S0006-3495(89)82743-2

Fluorescent cationic probes of mitochondria. Metrics and mechanism of interaction.

J R Bunting 1, T V Phan 1, E Kamali 1, R M Dowben 1
PMCID: PMC1280596  PMID: 2605307

Abstract

Mitochondria strongly accumulate amphiphilic cations. We report here a study of the association of respiring rat liver mitochondria with several fluorescent cationic dyes from differing structural classes. Using gravimetric and fluorometric analysis of dye partition, we find that dyes and mitochondria interact in three ways: (a) uptake with fluorescence quenching, (b) uptake without change in fluorescence intensity, and (c) lack of uptake. For dyes that quench upon uptake, the extent of quenching correlates with the degree of aggregation of the dye to dimers, as predicted by theory (Tomov, T.C. 1986. J. Biochem. Biophys. Methods. 13:29-38). Also predicted is the relationship observed between quenching and the mitochondria concentration when constant dye is titrated with mitochondria. Not predicted is the relationship observed between quenching and dye concentration when constant mitochondria are titrated with dye. Because a limit to dye uptake exists, in this case, the degree of quenching decreases as dye is added. A Langmuir isotherm analysis gives phenomenological parameters that predict quenching when it is observed as a function of dye concentration. By allowing for a decrease in membrane potential, caused by incorporation of cationic dye into the lipid bilayer, a modification of the Tomov theory predicts the dye titration data. We present a model of cationic dye-mitochondria interaction and discuss the use of these as probes of mitochondrial membrane potential.

Full text

PDF
979

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bashford C. L., Chance B., Smith J. C., Yoshida T. The behavior of oxonol dyes in phospholipid dispersions. Biophys J. 1979 Jan;25(1):63–85. doi: 10.1016/S0006-3495(79)85278-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bernal S. D., Lampidis T. J., Summerhayes I. C., Chen L. B. Rhodamine-123 selectively reduces clonal growth of carcinoma cells in vitro. Science. 1982 Dec 10;218(4577):1117–1119. doi: 10.1126/science.7146897. [DOI] [PubMed] [Google Scholar]
  3. Castro D. J., Saxton R. E., Fetterman H. R., Castro D. J., Ward P. H. Phototherapy with argon lasers and Rhodamine-123 for tumor eradication. Otolaryngol Head Neck Surg. 1988 Jun;98(6):581–588. doi: 10.1177/019459988809800608. [DOI] [PubMed] [Google Scholar]
  4. Chen L. B., Summerhayes I. C., Johnson L. V., Walsh M. L., Bernal S. D., Lampidis T. J. Probing mitochondria in living cells with rhodamine 123. Cold Spring Harb Symp Quant Biol. 1982;46(Pt 1):141–155. doi: 10.1101/sqb.1982.046.01.018. [DOI] [PubMed] [Google Scholar]
  5. Emaus R. K., Grunwald R., Lemasters J. J. Rhodamine 123 as a probe of transmembrane potential in isolated rat-liver mitochondria: spectral and metabolic properties. Biochim Biophys Acta. 1986 Jul 23;850(3):436–448. doi: 10.1016/0005-2728(86)90112-x. [DOI] [PubMed] [Google Scholar]
  6. Grzesiek S., Otto H., Dencher N. A. delta pH-induced fluorescence quenching of 9-aminoacridine in lipid vesicles is due to excimer formation at the membrane. Biophys J. 1989 Jun;55(6):1101–1109. doi: 10.1016/S0006-3495(89)82907-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Harris E. J., van Dam K. Changes of total water and sucrose space accompanying induced ion uptake or phosphate swelling of rat liver mitochondria. Biochem J. 1968 Feb;106(3):759–766. doi: 10.1042/bj1060759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hashimoto K., Angiolillo P., Rottenberg H. Membrane potential and surface potential in mitochondria. Binding of a cationic spin probe. Biochim Biophys Acta. 1984 Jan 30;764(1):55–62. doi: 10.1016/0005-2728(84)90140-3. [DOI] [PubMed] [Google Scholar]
  9. Hashimoto K., Rottenberg H. Surface potential in rat liver mitochondria: terbium ion as a phosphorescent probe for surface potential. Biochemistry. 1983 Dec 6;22(25):5738–5745. doi: 10.1021/bi00294a010. [DOI] [PubMed] [Google Scholar]
  10. Heyer E. J., Muller R. U., Finkelstein A. Inactivation of monazomycin-induced voltage-dependent conductance in thin lipid membranes. I. Inactivation produced by long chain quaternary ammonium ions. J Gen Physiol. 1976 Jun;67(6):703–729. doi: 10.1085/jgp.67.6.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hladky S. B. The energy barriers to ion transport by nonactin across thin lipid membranes. Biochim Biophys Acta. 1974 May 30;352(1):71–85. doi: 10.1016/0005-2736(74)90180-1. [DOI] [PubMed] [Google Scholar]
  12. Ion transport in liver mitochondria. Energy barrier and stoicheometry of aerobic K+ translocation. Eur J Biochem. 1969 Jan;7(3):418–426. doi: 10.1111/j.1432-1033.1969.tb19626.x. [DOI] [PubMed] [Google Scholar]
  13. Johnson L. V., Walsh M. L., Chen L. B. Localization of mitochondria in living cells with rhodamine 123. Proc Natl Acad Sci U S A. 1980 Feb;77(2):990–994. doi: 10.1073/pnas.77.2.990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. Lampidis T. J., Bernal S. D., Summerhayes I. C., Chen L. B. Selective toxicity of rhodamine 123 in carcinoma cells in vitro. Cancer Res. 1983 Feb;43(2):716–720. [PubMed] [Google Scholar]
  16. Lampidis T. J., Hasin Y., Weiss M. J., Chen L. B. Selective killing of carcinoma cells "in vitro" by lipophilic-cationic compounds: a cellular basis. Biomed Pharmacother. 1985;39(5):220–226. [PubMed] [Google Scholar]
  17. Loew L. M., Benson L., Lazarovici P., Rosenberg I. Fluorometric analysis of transferable membrane pores. Biochemistry. 1985 Apr 23;24(9):2101–2104. doi: 10.1021/bi00330a001. [DOI] [PubMed] [Google Scholar]
  18. Lötscher H. R., Winterhalter K. H., Carafoli E., Richter C. The energy-state of mitochondria during the transport of Ca2+. Eur J Biochem. 1980 Sep;110(1):211–216. doi: 10.1111/j.1432-1033.1980.tb04857.x. [DOI] [PubMed] [Google Scholar]
  19. Mai M. S., Allison W. S. Inhibition of an oligomycin-sensitive ATPase by cationic dyes, some of which are atypical uncouplers of intact mitochondria. Arch Biochem Biophys. 1983 Mar;221(2):467–476. doi: 10.1016/0003-9861(83)90165-0. [DOI] [PubMed] [Google Scholar]
  20. McLaughlin S., Harary H. The hydrophobic adsorption of charged molecules to bilayer membranes: a test of the applicability of the stern equation. Biochemistry. 1976 May 4;15(9):1941–1948. doi: 10.1021/bi00654a023. [DOI] [PubMed] [Google Scholar]
  21. Mitchell P., Moyle J. Estimation of membrane potential and pH difference across the cristae membrane of rat liver mitochondria. Eur J Biochem. 1969 Feb;7(4):471–484. doi: 10.1111/j.1432-1033.1969.tb19633.x. [DOI] [PubMed] [Google Scholar]
  22. Oseroff A. R., Ohuoha D., Ara G., McAuliffe D., Foley J., Cincotta L. Intramitochondrial dyes allow selective in vitro photolysis of carcinoma cells. Proc Natl Acad Sci U S A. 1986 Dec;83(24):9729–9733. doi: 10.1073/pnas.83.24.9729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. PULLMAN M. E., PENEFSKY H. S., DATTA A., RACKER E. Partial resolution of the enzymes catalyzing oxidative phosphorylation. I. Purification and properties of soluble dinitrophenol-stimulated adenosine triphosphatase. J Biol Chem. 1960 Nov;235:3322–3329. [PubMed] [Google Scholar]
  24. Sims P. J., Waggoner A. S., Wang C. H., Hoffman J. F. Studies on the mechanism by which cyanine dyes measure membrane potential in red blood cells and phosphatidylcholine vesicles. Biochemistry. 1974 Jul 30;13(16):3315–3330. doi: 10.1021/bi00713a022. [DOI] [PubMed] [Google Scholar]
  25. Tomov T. C. Pyronin G as a fluorescent probe for quantitative determination of the membrane potential of mitochondria. J Biochem Biophys Methods. 1986 Aug;13(1):29–38. doi: 10.1016/0165-022x(86)90005-9. [DOI] [PubMed] [Google Scholar]
  26. Wiseman A., Fields T. K., Chen L. B. Human cell variants resistant to rhodamine 6G. Somat Cell Mol Genet. 1985 Nov;11(6):541–556. doi: 10.1007/BF01534720. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES