Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1990 Jan;57(1):85–97. doi: 10.1016/S0006-3495(90)82509-1

Distribution of charge on photoreceptor disc membranes and implications for charged lipid asymmetry.

F C Tsui 1, S A Sundberg 1, W L Hubbell 1
PMCID: PMC1280645  PMID: 2153422

Abstract

A novel spin labeling technique is used to determine both the inner and outer surface potentials of isolated rod outer segment disc membranes and of reconstituted membranes containing rhodopsin with defined lipid compositions. It is shown that these potentials can be accounted for in a consistent manner by the accepted model of rhodopsin, the known lipid composition, and the Gouy-Chapman theory, provided the charged lipid is asymmetric in the membrane, with approximately 75% on the external surface.

Full text

PDF
85

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amis E. J., Davenport D. A., Yu H. Photopigment content of isolated bovine disk membrane vesicles. Anal Biochem. 1981 Jun;114(1):85–91. doi: 10.1016/0003-2697(81)90455-3. [DOI] [PubMed] [Google Scholar]
  2. BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
  3. Baldwin P. A., Hubbell W. L. Effects of lipid environment on the light-induced conformational changes of rhodopsin. 2. Roles of lipid chain length, unsaturation, and phase state. Biochemistry. 1985 May 21;24(11):2633–2639. doi: 10.1021/bi00332a007. [DOI] [PubMed] [Google Scholar]
  4. Bangham A. D., Papahadjopoulos D. Biophysical properties of phospholipids. I. Interaction of phosphatidylserine monolayers with metal ions. Biochim Biophys Acta. 1966 Sep 5;126(1):181–184. doi: 10.1016/0926-6585(66)90052-5. [DOI] [PubMed] [Google Scholar]
  5. Cafiso D. S., Hubbell W. L. EPR determination of membrane potentials. Annu Rev Biophys Bioeng. 1981;10:217–244. doi: 10.1146/annurev.bb.10.060181.001245. [DOI] [PubMed] [Google Scholar]
  6. Cafiso D. S., Hubbell W. L. Estimation of transmembrane potentials from phase equilibria of hydrophobic paramagnetic ions. Biochemistry. 1978 Jan 10;17(1):187–195. doi: 10.1021/bi00594a028. [DOI] [PubMed] [Google Scholar]
  7. Cafiso D. S., Hubbell W. L. Transmembrane electrical currents of spin-labeled hydrophobic ions. Biophys J. 1982 Sep;39(3):263–272. doi: 10.1016/S0006-3495(82)84516-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Castle J. D., Hubbell W. L. Estimation of membrane surface potential and charge density from the phase equilibrium of a paramagnetic amphiphile. Biochemistry. 1976 Nov 2;15(22):4818–4831. doi: 10.1021/bi00667a011. [DOI] [PubMed] [Google Scholar]
  9. Chabre M., Cavaggioni A. X-ray diffraction studies of retinal rods. II. Light effect on the osmotic properties. Biochim Biophys Acta. 1975 Mar 25;382(3):336–343. doi: 10.1016/0005-2736(75)90275-8. [DOI] [PubMed] [Google Scholar]
  10. Chabre M., Deterre P. Molecular mechanism of visual transduction. Eur J Biochem. 1989 Feb 1;179(2):255–266. doi: 10.1111/j.1432-1033.1989.tb14549.x. [DOI] [PubMed] [Google Scholar]
  11. Chabre M. Trigger and amplification mechanisms in visual phototransduction. Annu Rev Biophys Biophys Chem. 1985;14:331–360. doi: 10.1146/annurev.bb.14.060185.001555. [DOI] [PubMed] [Google Scholar]
  12. Chen Y. S., Hubbell W. L. Temperature- and light-dependent structural changes in rhodopsin-lipid membranes. Exp Eye Res. 1973 Dec 24;17(6):517–532. doi: 10.1016/0014-4835(73)90082-1. [DOI] [PubMed] [Google Scholar]
  13. Corless J. M., McCaslin D. R., Scott B. L. Two-dimensional rhodopsin crystals from disk membranes of frog retinal rod outer segments. Proc Natl Acad Sci U S A. 1982 Feb;79(4):1116–1120. doi: 10.1073/pnas.79.4.1116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Crain R. C., Marinetti G. V., O'Brien D. F. Topology of amino phospholipids in bovine retinal rod outer segment disk membranes. Biochemistry. 1978 Oct 3;17(20):4186–4192. doi: 10.1021/bi00613a012. [DOI] [PubMed] [Google Scholar]
  15. Deese A. J., Dratz E. A., Dahlquist F. W., Paddy M. R. Interaction of rhodopsin with two unsaturated phosphatidylcholines: a deuterium nuclear magnetic resonance study. Biochemistry. 1981 Oct 27;20(22):6420–6427. doi: 10.1021/bi00525a021. [DOI] [PubMed] [Google Scholar]
  16. Dohlman H. G., Caron M. G., Lefkowitz R. J. A family of receptors coupled to guanine nucleotide regulatory proteins. Biochemistry. 1987 May 19;26(10):2657–2664. doi: 10.1021/bi00384a001. [DOI] [PubMed] [Google Scholar]
  17. Dratz E. A., Van Breemen J. F., Kamps K. M., Keegstra W., Van Bruggen E. F. Two-dimensional crystallization of bovine rhodopsin. Biochim Biophys Acta. 1985 Dec 20;832(3):337–342. doi: 10.1016/0167-4838(85)90268-7. [DOI] [PubMed] [Google Scholar]
  18. Drenthe E. H., Bonting S. L., Daemen F. J. Transbilayer distribution of phospholipids in photoreceptor membrane studied with various phospholipases. Biochim Biophys Acta. 1980 Dec 2;603(1):117–129. doi: 10.1016/0005-2736(80)90395-8. [DOI] [PubMed] [Google Scholar]
  19. Drenthe E. H., Klompmakers A. A., Bonting S. L., Daemen F. J. Transbilayer distribution of phospholipids in photoreceptor membrane studied with trinitrobenzenesulfonate alone and in combination with phospholipase D. Biochim Biophys Acta. 1980 Dec 2;603(1):130–141. doi: 10.1016/0005-2736(80)90396-x. [DOI] [PubMed] [Google Scholar]
  20. Eisenberg M., Gresalfi T., Riccio T., McLaughlin S. Adsorption of monovalent cations to bilayer membranes containing negative phospholipids. Biochemistry. 1979 Nov 13;18(23):5213–5223. doi: 10.1021/bi00590a028. [DOI] [PubMed] [Google Scholar]
  21. Fung B. K., Hubbell W. L. Organization of rhodopsin in photoreceptor membranes. 1. Proteolysis of bovine rhodopsin in native membranes and the distribution of sulfhydryl groups in the fragments. Biochemistry. 1978 Oct 17;17(21):4396–4402. doi: 10.1021/bi00614a007. [DOI] [PubMed] [Google Scholar]
  22. Fung B. K., Hubbell W. L. Organization of rhodopsin in photoreceptor membranes. 2. Transmembrane organization of bovine rhodopsin: evidence from proteolysis and lactoperoxidase-catalyzed iodination of native and reconstituted membranes. Biochemistry. 1978 Oct 17;17(21):4403–4410. doi: 10.1021/bi00614a008. [DOI] [PubMed] [Google Scholar]
  23. Hargrave P. A., Fong S. L. The amino- and carboxyl-terminal sequence of bovine rhodopsin. J Supramol Struct. 1977;6(4):559–570. doi: 10.1002/jss.400060409. [DOI] [PubMed] [Google Scholar]
  24. Hargrave P. A., McDowell J. H., Curtis D. R., Wang J. K., Juszczak E., Fong S. L., Rao J. K., Argos P. The structure of bovine rhodopsin. Biophys Struct Mech. 1983;9(4):235–244. doi: 10.1007/BF00535659. [DOI] [PubMed] [Google Scholar]
  25. Hartsel S. C., Cafiso D. S. A test of discreteness-of-charge effects in phospholipid vesicles: measurements using paramagnetic amphiphiles. Biochemistry. 1986 Dec 16;25(25):8214–8219. doi: 10.1021/bi00373a014. [DOI] [PubMed] [Google Scholar]
  26. Hong K., Hubbell W. L. Lipid requirements for Rhodopsin regenerability. Biochemistry. 1973 Oct 23;12(22):4517–4523. doi: 10.1021/bi00746a033. [DOI] [PubMed] [Google Scholar]
  27. Hong K., Knudsen P. J., Hubbell W. L. Purification of rhodopsin on hydroxyapatite columns, detergent exchange, and recombination with phospholipids. Methods Enzymol. 1982;81:144–150. doi: 10.1016/s0076-6879(82)81024-0. [DOI] [PubMed] [Google Scholar]
  28. Hubbell W. L., Metcalfe J. C., Metcalfe S. M., McConnell H. M. The interaction of small molecules with spin-labelled erythrocyte membranes. Biochim Biophys Acta. 1970 Dec 1;219(2):415–427. doi: 10.1016/0005-2736(70)90219-1. [DOI] [PubMed] [Google Scholar]
  29. Hubbell W. L. Transbilayer coupling mechanism for the formation of lipid asymmetry in biological membranes. Application to the photoreceptor disc membrane. Biophys J. 1990 Jan;57(1):99–108. doi: 10.1016/S0006-3495(90)82510-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Karnik S. S., Sakmar T. P., Chen H. B., Khorana H. G. Cysteine residues 110 and 187 are essential for the formation of correct structure in bovine rhodopsin. Proc Natl Acad Sci U S A. 1988 Nov;85(22):8459–8463. doi: 10.1073/pnas.85.22.8459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Korenbrot J. I., Brown D. T., Cone R. A. Membrane characteristics and osmotic behavior of isolated rod outer segments. J Cell Biol. 1973 Feb;56(2):389–398. doi: 10.1083/jcb.56.2.389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Krebs W., Kühn H. Structure of isolated bovine rod outer segment membranes. Exp Eye Res. 1977 Nov;25(5):511–526. doi: 10.1016/0014-4835(77)90180-4. [DOI] [PubMed] [Google Scholar]
  33. Liebman P. A., Parker K. R., Dratz E. A. The molecular mechanism of visual excitation and its relation to the structure and composition of the rod outer segment. Annu Rev Physiol. 1987;49:765–791. doi: 10.1146/annurev.ph.49.030187.004001. [DOI] [PubMed] [Google Scholar]
  34. McLaughlin S. The electrostatic properties of membranes. Annu Rev Biophys Biophys Chem. 1989;18:113–136. doi: 10.1146/annurev.bb.18.060189.000553. [DOI] [PubMed] [Google Scholar]
  35. Miljanich G. P., Nemes P. P., White D. L., Dratz E. A. The asymmetric transmembrane distribution of phosphatidylethanolamine, phosphatidylserine, and fatty acids of the bovine retinal rod outer segment disk membrane. J Membr Biol. 1981;60(3):249–255. doi: 10.1007/BF01992562. [DOI] [PubMed] [Google Scholar]
  36. Nelson A. P., McQuarrie D. A. The effect of discrete charges on the electrical properties of a membrane. I. J Theor Biol. 1975 Nov;55(1):13–27. doi: 10.1016/s0022-5193(75)80106-8. [DOI] [PubMed] [Google Scholar]
  37. Petersen D. C., Cone R. A. The electric dipole moment of rhodopsin solubilized in Triton X-100. Biophys J. 1975 Dec;15(12):1181–1200. doi: 10.1016/S0006-3495(75)85894-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Ryba N. J., Horváth L. I., Watts A., Marsh D. Molecular exchange at the lipid-rhodopsin interface: spin-label electron spin resonance studies of rhodopsin-dimyristoylphosphatidylcholine recombinants. Biochemistry. 1987 Jun 2;26(11):3234–3240. doi: 10.1021/bi00385a045. [DOI] [PubMed] [Google Scholar]
  39. SINGLETON W. S., GRAY M. S., BROWN M. L., WHITE J. L. CHROMATOGRAPHICALLY HOMOGENEOUS LECITHIN FROM EGG PHOSPHOLIPIDS. J Am Oil Chem Soc. 1965 Jan;42:53–56. doi: 10.1007/BF02558256. [DOI] [PubMed] [Google Scholar]
  40. Schleicher A., Hofmann K. P. Kinetic study on the equilibrium between membrane-bound and free photoreceptor G-protein. J Membr Biol. 1987;95(3):271–281. doi: 10.1007/BF01869489. [DOI] [PubMed] [Google Scholar]
  41. Schnetkamp P. P., Klompmakers A. A., Daemen F. J. The isolation of stable cattle rod outer segments with an intact plasma membrane. Biochim Biophys Acta. 1979 Apr 19;552(3):379–389. doi: 10.1016/0005-2736(79)90182-2. [DOI] [PubMed] [Google Scholar]
  42. Sharp K. A., Brooks D. E. Calculation of the electrophoretic mobility of a particle bearing bound polyelectrolyte using the nonlinear poisson-boltzmann equation. Biophys J. 1985 Apr;47(4):563–566. doi: 10.1016/S0006-3495(85)83951-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Smith H. G., Jr, Fager R. S., Litman R. J. Light-activated calcium release from sonicated bovine retinal rod outer segment disks. Biochemistry. 1977 Apr 5;16(7):1399–1405. doi: 10.1021/bi00626a025. [DOI] [PubMed] [Google Scholar]
  44. Sundberg S. A., Hubbell W. L. Investigation of surface potential asymmetry in phospholipid vesicles by a spin label relaxation method. Biophys J. 1986 Feb;49(2):553–562. doi: 10.1016/S0006-3495(86)83665-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Tsui F. C., Ojcius D. M., Hubbell W. L. The intrinsic pKa values for phosphatidylserine and phosphatidylethanolamine in phosphatidylcholine host bilayers. Biophys J. 1986 Feb;49(2):459–468. doi: 10.1016/S0006-3495(86)83655-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Von Tscharner V., Radda G. K. The effect of fatty acids on the surface potential of phospholipid vesicles measured by condensed phase radioluminescence. Biochim Biophys Acta. 1981 May 6;643(2):435–448. doi: 10.1016/0005-2736(81)90087-0. [DOI] [PubMed] [Google Scholar]
  47. Watts A., Volotovski I. D., Marsh D. Rhodopsin-lipid associations in bovine rod outer segment membranes. Identification of immobilized lipid by spin-labels. Biochemistry. 1979 Oct 30;18(22):5006–5013. doi: 10.1021/bi00589a031. [DOI] [PubMed] [Google Scholar]
  48. Wiedmann T. S., Pates R. D., Beach J. M., Salmon A., Brown M. F. Lipid-protein interactions mediate the photochemical function of rhodopsin. Biochemistry. 1988 Aug 23;27(17):6469–6474. doi: 10.1021/bi00417a041. [DOI] [PubMed] [Google Scholar]
  49. Winiski A. P., McLaughlin A. C., McDaniel R. V., Eisenberg M., McLaughlin S. An experimental test of the discreteness-of-charge effect in positive and negative lipid bilayers. Biochemistry. 1986 Dec 16;25(25):8206–8214. doi: 10.1021/bi00373a013. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES