Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1990 Jan;57(1):153–156. doi: 10.1016/S0006-3495(90)82516-9

Cholesterol interacts with all of the lipid in bilayer membranes. Implications for models.

M A Singer 1, L Finegold 1
PMCID: PMC1280652  PMID: 2297561

Abstract

The interaction of cholesterol with lipid membranes has been studied by differential scanning calorimetry on liposomes, a technique which involves only the natural lipids, with no exogeneous probes. The influence of cholesterol at different molar percent concentrations c on the enthalpy delta H of the main gel to liquid crystal phase transition of saturated phosphatidylcholines of acyl chain length n = 12-20 was well represented by delta H = -9.43 + 1.01n - 0.268c kcal/mol. The linear dependence of delta H simultaneously upon chain length n and upon cholesterol concentration c shows clearly that cholesterol interacts with the deeper part of the lipids, as well as the superficial parts. This observation is not accommodated in any of the current models of cholesterol-lipid interactions.

Full text

PDF
153

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cruzeiro-Hansson L., Ipsen J. H., Mouritsen O. G. Intrinsic molecules in lipid membranes change the lipid-domain interfacial area: cholesterol at domain interfaces. Biochim Biophys Acta. 1989 Feb 27;979(2):166–176. doi: 10.1016/0005-2736(89)90432-x. [DOI] [PubMed] [Google Scholar]
  2. Estep T. N., Freire E., Anthony F., Barenholz Y., Biltonen R. L., Thompson T. E. Thermal behavior of stearoylsphingomyelin-cholesterol dispersions. Biochemistry. 1981 Dec 8;20(25):7115–7118. doi: 10.1021/bi00528a010. [DOI] [PubMed] [Google Scholar]
  3. Finegold L., Singer M. A. The metastability of saturated phosphatidylcholines depends on the acyl chain length. Biochim Biophys Acta. 1986 Mar 13;855(3):417–420. doi: 10.1016/0005-2736(86)90086-6. [DOI] [PubMed] [Google Scholar]
  4. Ipsen J. H., Mouritsen O. G., Zuckermann M. J. Theory of thermal anomalies in the specific heat of lipid bilayers containing cholesterol. Biophys J. 1989 Oct;56(4):661–667. doi: 10.1016/S0006-3495(89)82713-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kusumi A., Subczynski W. K., Pasenkiewicz-Gierula M., Hyde J. S., Merkle H. Spin-label studies on phosphatidylcholine-cholesterol membranes: effects of alkyl chain length and unsaturation in the fluid phase. Biochim Biophys Acta. 1986 Jan 29;854(2):307–317. doi: 10.1016/0005-2736(86)90124-0. [DOI] [PubMed] [Google Scholar]
  6. Lewis R. N., Mak N., McElhaney R. N. A differential scanning calorimetric study of the thermotropic phase behavior of model membranes composed of phosphatidylcholines containing linear saturated fatty acyl chains. Biochemistry. 1987 Sep 22;26(19):6118–6126. doi: 10.1021/bi00393a026. [DOI] [PubMed] [Google Scholar]
  7. Mabrey S., Mateo P. L., Sturtevant J. M. High-sensitivity scanning calorimetric study of mixtures of cholesterol with dimyristoyl- and dipalmitoylphosphatidylcholines. Biochemistry. 1978 Jun 13;17(12):2464–2468. doi: 10.1021/bi00605a034. [DOI] [PubMed] [Google Scholar]
  8. Mabrey S., Sturtevant J. M. Investigation of phase transitions of lipids and lipid mixtures by sensitivity differential scanning calorimetry. Proc Natl Acad Sci U S A. 1976 Nov;73(11):3862–3866. doi: 10.1073/pnas.73.11.3862. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Scott H. L., Kalaskar S. Lipid chains and cholesterol in model membranes: a Monte Carlo Study. Biochemistry. 1989 May 2;28(9):3687–3691. doi: 10.1021/bi00435a010. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES