Abstract
We present an analysis of models based on current structural concepts of the F0F1 synthases, accounting for coupling between proton transport and ATP synthesis. It is assumed that each of the three alpha beta-subunits of the synthase can exist in three different conformational states E, Eo and E*. Proton translocation is coupled to cyclic interconversion of the conformations of the alpha beta-subunits. The conformational changes of these subunits are assumed to be coordinated so that all three interconvert simultaneously, in a rate-limiting transition. Binding and release of the ligands ATP, ADP, Pi, and protons are assumed to be equilibrium steps. In one family of models, interconversion of the alpha beta-subunits of F1 is coupled to the translocation event in F0 acting as a proton carrier. In a second family of models, protons combine with F0F1 and are translocated during the interconversion step in a chemiport. Kinetic tests involving the mutual effects of [ATP], [ADP], H+', and H+" are described, allowing us to make a distinction between the different models and submodels.
Full text
PDF












Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amzel L. M., Pedersen P. L. Proton atpases: structure and mechanism. Annu Rev Biochem. 1983;52:801–824. doi: 10.1146/annurev.bi.52.070183.004101. [DOI] [PubMed] [Google Scholar]
- Chang T. M., Penefsky H. S. Energy-dependent enhancement of aurovertin fluorescence. An indicator of conformational changes in beef heart mitochondrial adenosine triphosphatase. J Biol Chem. 1974 Feb 25;249(4):1090–1098. [PubMed] [Google Scholar]
- Cox G. B., Fimmel A. L., Gibson F., Hatch L. The mechanism of ATP synthase: a reassessment of the functions of the b and a subunits. Biochim Biophys Acta. 1986 Apr 2;849(1):62–69. doi: 10.1016/0005-2728(86)90096-4. [DOI] [PubMed] [Google Scholar]
- Cox G. B., Jans D. A., Fimmel A. L., Gibson F., Hatch L. Hypothesis. The mechanism of ATP synthase. Conformational change by rotation of the beta-subunit. Biochim Biophys Acta. 1984 Dec 17;768(3-4):201–208. doi: 10.1016/0304-4173(84)90016-8. [DOI] [PubMed] [Google Scholar]
- Cross R. L. The mechanism and regulation of ATP synthesis by F1-ATPases. Annu Rev Biochem. 1981;50:681–714. doi: 10.1146/annurev.bi.50.070181.003341. [DOI] [PubMed] [Google Scholar]
- Futai M., Kanazawa H. Structure and function of proton-translocating adenosine triphosphatase (F0F1): biochemical and molecular biological approaches. Microbiol Rev. 1983 Sep;47(3):285–312. doi: 10.1128/mr.47.3.285-312.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gibson F. Biochemical and genetic studies on the assembly and function of the F1-F0 adenosine triphosphatase of Escherichia coli. Biochem Soc Trans. 1983 Jun;11(3):229–240. doi: 10.1042/bst0110229. [DOI] [PubMed] [Google Scholar]
- Gresser M. J., Myers J. A., Boyer P. D. Catalytic site cooperativity of beef heart mitochondrial F1 adenosine triphosphatase. Correlations of initial velocity, bound intermediate, and oxygen exchange measurements with an alternating three-site model. J Biol Chem. 1982 Oct 25;257(20):12030–12038. [PubMed] [Google Scholar]
- Hatefi Y. The mitochondrial electron transport and oxidative phosphorylation system. Annu Rev Biochem. 1985;54:1015–1069. doi: 10.1146/annurev.bi.54.070185.005055. [DOI] [PubMed] [Google Scholar]
- Hoppe J., Sebald W. The proton conducting F0-part of bacterial ATP synthases. Biochim Biophys Acta. 1984 Apr 9;768(1):1–27. doi: 10.1016/0304-4173(84)90005-3. [DOI] [PubMed] [Google Scholar]
- Kandpal R. P., Boyer P. D. Escherichia coli F1 ATPase is reversibly inhibited by intra- and intersubunit crosslinking: an approach to assess rotational catalysis. Biochim Biophys Acta. 1987 Jan 16;890(1):97–105. doi: 10.1016/0005-2728(87)90073-9. [DOI] [PubMed] [Google Scholar]
- Kozlov I. A., Milgrom YaM, Murataliev M. B., Vulfson E. N. The nucleotide binding site of F1-ATPase which carries out uni-site catalysis is one of the alternating active sites of the enzyme. FEBS Lett. 1985 Sep 23;189(2):286–290. doi: 10.1016/0014-5793(85)81041-3. [DOI] [PubMed] [Google Scholar]
- Läuger P. Kinetic properties of ion carriers and channels. J Membr Biol. 1980 Dec 30;57(3):163–78(-RETURN-). doi: 10.1007/BF01869585. [DOI] [PubMed] [Google Scholar]
- Läuger P. Thermodynamic and kinetic properties of electrogenic ion pumps. Biochim Biophys Acta. 1984 Sep 3;779(3):307–341. doi: 10.1016/0304-4157(84)90015-7. [DOI] [PubMed] [Google Scholar]
- Matsuno-Yagi A., Hatefi Y. Kinetic modalities of ATP synthesis. Regulation by the mitochondrial respiratory chain. J Biol Chem. 1986 Oct 25;261(30):14031–14038. [PubMed] [Google Scholar]
- Matsuno-Yagi A., Yagi T., Hatefi Y. Studies on the mechanism of oxidative phosphorylation: effects of specific F0 modifiers on ligand-induced conformation changes of F1. Proc Natl Acad Sci U S A. 1985 Nov;82(22):7550–7554. doi: 10.1073/pnas.82.22.7550. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Melese T., Boyer P. D. Derivatization of the catalytic subunits of the chloroplast ATPase by 2-azido-ATP and dicyclohexylcarbodiimide. Evidence for catalytically induced interchange of the subunits. J Biol Chem. 1985 Dec 15;260(29):15398–15401. [PubMed] [Google Scholar]
- Noumi T., Taniai M., Kanazawa H., Futai M. Replacement of arginine 246 by histidine in the beta subunit of Escherichia coli H+-ATPase resulted in loss of multi-site ATPase activity. J Biol Chem. 1986 Jul 15;261(20):9196–9201. [PubMed] [Google Scholar]
- O'Neal C. C., Boyer P. D. Assessment of the rate of bound substrate interconversion and of ATP acceleration of product release during catalysis by mitochondrial adenosine triphosphatase. J Biol Chem. 1984 May 10;259(9):5761–5767. [PubMed] [Google Scholar]
- Penefsky H. S. Energy-dependent dissociation of ATP from high affinity catalytic sites of beef heart mitochondrial adenosine triphosphatase. J Biol Chem. 1985 Nov 5;260(25):13735–13741. [PubMed] [Google Scholar]
- Penefsky H. S. Mechanism of action of the mitochondrial proton pumping ATPase in ATP synthesis and hydrolysis. Prog Clin Biol Res. 1988;273:261–268. [PubMed] [Google Scholar]
- Schneider E., Altendorf K. Bacterial adenosine 5'-triphosphate synthase (F1F0): purification and reconstitution of F0 complexes and biochemical and functional characterization of their subunits. Microbiol Rev. 1987 Dec;51(4):477–497. doi: 10.1128/mr.51.4.477-497.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Senior A. E. ATP synthesis by oxidative phosphorylation. Physiol Rev. 1988 Jan;68(1):177–231. doi: 10.1152/physrev.1988.68.1.177. [DOI] [PubMed] [Google Scholar]
- Stroop S. D., Boyer P. D. Catalytic and regulatory effects of light intensity on chloroplast ATP synthase. Biochemistry. 1987 Mar 10;26(5):1479–1484. doi: 10.1021/bi00379a040. [DOI] [PubMed] [Google Scholar]
- Tozer R. G., Dunn S. D. Column centrifugation generates an intersubunit disulfide bridge in Escherichia coli F1-ATPase. Eur J Biochem. 1986 Dec 1;161(2):513–518. doi: 10.1111/j.1432-1033.1986.tb10472.x. [DOI] [PubMed] [Google Scholar]
- Vignais P. V., Satre M. Recent developments on structural and functional aspects of the F1 sector of H+-linked ATPases. Mol Cell Biochem. 1984;60(1):33–71. doi: 10.1007/BF00226299. [DOI] [PubMed] [Google Scholar]
