Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1979 Aug;293:347–364. doi: 10.1113/jphysiol.1979.sp012893

Spatial and temporal properties of X and Y cells in the cat lateral geniculate nucleus.

A M Derrington, A F Fuchs
PMCID: PMC1280717  PMID: 501605

Abstract

1. Extracellular recordings were obtained from units in the dorsal lateral geniculate nucleus of anaesthetized cats. 2. Of sixty-nine units, sixty-three could be unambiguously identified as either X (n = 33) or Y (n = 30) by testing the presence of a null response to stationary sine wave gratings presented in different spatial phases. 3. In response to stationary gratings flashed on and off, Y cells exhibited bigger, more transient responses than X cells. 4. All Y cells but few X cells exhibited a shift effect (modulated periphery effect). 5. In response to drifting sine wave gratings of different spatial frequencies, X cells preferred higher spatial frequencies and showed smaller peak contrast sensitivities and somewhat narrower tuning curves than Y cells. 6. In response to a sine wave grafting of optimal spatial frequency drifting at different velocities, X and Y cells had similar temporal tuning curves. However, Y cells, largely because they preferred lower spatial frequencies, preferred higher drift velocities than X cells. 7. Our data suggest that X and Y cells can be differentiated objectively on the basis of a number of discharge parameters. These parameters are compared with similar data collected by others from neurones in the visual cortex.

Full text

PDF
347

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barlow H. B., Derrington A. M., Harris L. R., Lennie P. The effects of remote retinal stimulation on the responses of cat retinal ganglion cells. J Physiol. 1977 Jul;269(1):177–194. doi: 10.1113/jphysiol.1977.sp011898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brooks B. A., Fuchs A. F. Influence of stimulus parameters on visual sensitivity during saccadic eye movement. Vision Res. 1975 Dec;15(12):1389–1398. doi: 10.1016/0042-6989(75)90196-0. [DOI] [PubMed] [Google Scholar]
  3. Cleland B. G., Dubin M. W., Levick W. R. Sustained and transient neurones in the cat's retina and lateral geniculate nucleus. J Physiol. 1971 Sep;217(2):473–496. doi: 10.1113/jphysiol.1971.sp009581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cleland B. G., Levick W. R. Brisk and sluggish concentrically organized ganglion cells in the cat's retina. J Physiol. 1974 Jul;240(2):421–456. doi: 10.1113/jphysiol.1974.sp010617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cleland B. G., Levick W. R., Sanderson K. J. Properties of sustained and transient ganglion cells in the cat retina. J Physiol. 1973 Feb;228(3):649–680. doi: 10.1113/jphysiol.1973.sp010105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dreher B., Sanderson K. J. Receptive field analysis: responses to moving visual contours by single lateral geniculate neurones in the cat. J Physiol. 1973 Oct;234(1):95–118. doi: 10.1113/jphysiol.1973.sp010336. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Enroth-Cugell C., Robson J. G. The contrast sensitivity of retinal ganglion cells of the cat. J Physiol. 1966 Dec;187(3):517–552. doi: 10.1113/jphysiol.1966.sp008107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fischer B., Barth R., Sternheim C. E. Interaction of receptive field responses and shift-effect in cat retinal and geniculate neurons. Exp Brain Res. 1978 Feb 15;31(2):235–248. doi: 10.1007/BF00237602. [DOI] [PubMed] [Google Scholar]
  9. Fischer B., Krüger J. The shift-effect in the cat's lateral geniculate neurons. Exp Brain Res. 1974;21(2):225–227. doi: 10.1007/BF00234391. [DOI] [PubMed] [Google Scholar]
  10. Hochstein S., Shapley R. M. Quantitative analysis of retinal ganglion cell classifications. J Physiol. 1976 Nov;262(2):237–264. doi: 10.1113/jphysiol.1976.sp011594. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hoffman K. P., Stone J. Conduction velocity of afferents to cat visual cortex: a correlation with cortical receptive field properties. Brain Res. 1971 Sep 24;32(2):460–466. doi: 10.1016/0006-8993(71)90340-4. [DOI] [PubMed] [Google Scholar]
  12. Hoffmann K. P., Stone J., Sherman S. M. Relay of receptive-field properties in dorsal lateral geniculate nucleus of the cat. J Neurophysiol. 1972 Jul;35(4):518–531. doi: 10.1152/jn.1972.35.4.518. [DOI] [PubMed] [Google Scholar]
  13. Ikeda H., Wright M. J. Properties of LGN cells in kittens reared with convergent squint: a neurophysiological demonstration of amblyopia. Exp Brain Res. 1976 May 10;25(1):63–77. doi: 10.1007/BF00237326. [DOI] [PubMed] [Google Scholar]
  14. Ikeda H., Wright M. J. Receptive field organization of 'sustained' and 'transient' retinal ganglion cells which subserve different function roles. J Physiol. 1972 Dec;227(3):769–800. doi: 10.1113/jphysiol.1972.sp010058. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. KUFFLER S. W. Discharge patterns and functional organization of mammalian retina. J Neurophysiol. 1953 Jan;16(1):37–68. doi: 10.1152/jn.1953.16.1.37. [DOI] [PubMed] [Google Scholar]
  16. Krüger J. The shift-effect in the lateral geniculate body of the rhesus monkey. Exp Brain Res. 1977 Sep 28;29(3-4):387–392. doi: 10.1007/BF00236177. [DOI] [PubMed] [Google Scholar]
  17. Levick W. R. Another tungsten microelectrode. Med Biol Eng. 1972 Jul;10(4):510–515. doi: 10.1007/BF02474199. [DOI] [PubMed] [Google Scholar]
  18. Mackay D. M. Elevation of visual threshold by displacement of retinal image. Nature. 1970 Jan 3;225(5227):90–92. doi: 10.1038/225090a0. [DOI] [PubMed] [Google Scholar]
  19. Movshon J. A., Thompson I. D., Tolhurst D. J. Spatial and temporal contrast sensitivity of neurones in areas 17 and 18 of the cat's visual cortex. J Physiol. 1978 Oct;283:101–120. doi: 10.1113/jphysiol.1978.sp012490. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Noda H. Discharges of relay cells in lateral geniculate nucleus of the cat during spontaneous eye movements in light and darkness. J Physiol. 1975 Sep;250(3):579–595. doi: 10.1113/jphysiol.1975.sp011071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sanderson K. J. The projection of the visual field to the lateral geniculate and medial interlaminar nuclei in the cat. J Comp Neurol. 1971 Sep;143(1):101–108. doi: 10.1002/cne.901430107. [DOI] [PubMed] [Google Scholar]
  22. Shapley R., Hochstein S. Visual spatial summation in two classes of geniculate cells. Nature. 1975 Jul 31;256(5516):411–413. doi: 10.1038/256411a0. [DOI] [PubMed] [Google Scholar]
  23. Singer W., Bedworth N. Inhibitory interaction between X and Y units in the cat lateral geniculate nucleus. Brain Res. 1973 Jan 30;49(2):291–307. doi: 10.1016/0006-8993(73)90424-1. [DOI] [PubMed] [Google Scholar]
  24. Singer W., Tretter F., Cynader M. Organization of cat striate cortex: a correlation of receptive-field properties with afferent and efferent connections. J Neurophysiol. 1975 Sep;38(5):1080–1098. doi: 10.1152/jn.1975.38.5.1080. [DOI] [PubMed] [Google Scholar]
  25. Stone J., Dreher B. Projection of X- and Y-cells of the cat's lateral geniculate nucleus to areas 17 and 18 of visual cortex. J Neurophysiol. 1973 May;36(3):551–567. doi: 10.1152/jn.1973.36.3.551. [DOI] [PubMed] [Google Scholar]
  26. WETHERILL G. B., LEVITT H. SEQUENTIAL ESTIMATION OF POINTS ON A PSYCHOMETRIC FUNCTION. Br J Math Stat Psychol. 1965 May;18:1–10. doi: 10.1111/j.2044-8317.1965.tb00689.x. [DOI] [PubMed] [Google Scholar]
  27. Wilson P. D., Rowe M. H., Stone J. Properties of relay cells in cat's lateral geniculate nucleus: a comparison of W-cells with X- and Y-cells. J Neurophysiol. 1976 Nov;39(6):1193–1209. doi: 10.1152/jn.1976.39.6.1193. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES