Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1979 Aug;293:513–523. doi: 10.1113/jphysiol.1979.sp012904

Selective response of rat peripheral sympathetic nervous system to various stimuli

I H Ulus 1,*, R J Wurtman 1
PMCID: PMC1280728  PMID: 41093

Abstract

1. We utilized the induction of tyrosine hydroxylase, a catecholamine-synthesizing enzyme, in sympathetic ganglia and adrenal medullae to explore the central and peripheral mechanisms through which choline, various environmental stresses, and drugs that alter blood pressure or central neurotransmission affect various portions of the sympathetic nervous system. Animals received each treatment chronically, and enzyme activity was measured in the superior cervical, stellate, and coeliac ganglia and in the adrenal medullae.

2. Choline administration increased tyrosine hydroxylase activity in all four tissues, probably by increasing the release of acetylcholine from preganglionic sympathetic neurones that synapse on catecholamine-producing ganglion and chromaffin cells; carbachol and nicotine had similar effects.

3. Insulin enhanced tyrosine hydroxylase activity primarily in the coeliac ganglion and the adrenal medullae, but not in the superior cervical ganglia.

4. Reserpine and phenoxybenzamine increased the activity of the enzyme in all four tissues.

5. Prolonged exposure to a cold environment increased enzyme activity in all four tissues, but especially in the stellate and coeliac ganglia; forced swimming affected tyrosine hydroxylase only in these two ganglia.

6. Several drugs known to modify central neurotransmission were found to increase tyrosine hydroxylase activity in some portions of the sympathetic nervous system but not in others. 5,7-Dihydroxytryptamine, which destroys terminals of serotoninergic neurones, enhanced enzyme activity in all four tissues, but primarily in the coeliac ganglion and adrenal medullae. ET-495 (a dopaminergic agonist), D-amphetamine, and morphine induced tyrosine hydroxylase activity in the adrenal medullae and the coeliac ganglion, but not in the superior cervical ganglia. Oxotremorine, a centrally acting muscarinic agonist, increased tyrosine hydroxylase activity only in the adrenal medullae; its effect was not blocked by methylatropine, a peripheral muscarinic blocker.

7. These data indicate that specific neurones in the central nervous system, which utilize specific neurotransmitters and which are differentially affected by drugs and environmental inputs, selectively influence the outflows through the various zones of the sympathetic nervous system.

Full text

PDF
513

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson T. R., Slotkin T. A. Maturation of the adrenal medulla--IV. Effects of morphine. Biochem Pharmacol. 1975 Aug 15;24(16):1469–1474. doi: 10.1016/0006-2952(75)90020-9. [DOI] [PubMed] [Google Scholar]
  2. Anderson T. R., Slotkin T. A. The role of neural input in the effects of morphine on the rat adrenal medulla. Biochem Pharmacol. 1976 May 1;25(9):1071–1074. doi: 10.1016/0006-2952(76)90499-8. [DOI] [PubMed] [Google Scholar]
  3. Breese G. R., Cooper B. R., Mueller R. A. Evidence for involvement of 5-hydroxytryptamine in the actions of amphetamine. Br J Pharmacol. 1974 Oct;52(2):307–314. doi: 10.1111/j.1476-5381.1974.tb09714.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Carr L. A., Moore K. E. Norepinephrine: release from brain by d-amphetamine in vivo. Science. 1969 Apr 18;164(3877):322–323. doi: 10.1126/science.164.3877.322. [DOI] [PubMed] [Google Scholar]
  5. Chuang D. M., Costa E. Biosynthesis of tyrosine hydroxylase in rat adrenal medulla after exposure to cold. Proc Natl Acad Sci U S A. 1974 Nov;71(11):4570–4574. doi: 10.1073/pnas.71.11.4570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cohen E. L., Wurtman R. J. Brain acetylcholine: increase after systemic choline administration. Life Sci. 1975 Apr 1;16(7):1095–1102. doi: 10.1016/0024-3205(75)90194-0. [DOI] [PubMed] [Google Scholar]
  7. DUNER H. The effect of insulin hypoglycemia on the secretion of adrenaline and noradrenaline from the suprarenal of cat. Acta Physiol Scand. 1954 Oct 20;32(1):63–68. doi: 10.1111/j.1748-1716.1954.tb01155.x. [DOI] [PubMed] [Google Scholar]
  8. Dairman W., Udenfriend S. Increased conversion of tyrosine to catecholamines in the intact rat following elevation of tissue tyrosine hydroxylase levels by administered phenoxybenzamine. Mol Pharmacol. 1970 Jul;6(4):350–356. [PubMed] [Google Scholar]
  9. Glowinski J., Baldessarini R. J. Metabolism of norepinephrine in the central nervous system. Pharmacol Rev. 1966 Dec;18(4):1201–1238. [PubMed] [Google Scholar]
  10. Guidotti A., Costa E. Commentary: Trans-synaptic regulation of typrosine 3-mono-oxygenase biosynthesis in rat adrenal medulla. Biochem Pharmacol. 1977 May 1;26(9):817–823. doi: 10.1016/0006-2952(77)90393-8. [DOI] [PubMed] [Google Scholar]
  11. Hales J. R., Iriki M. Integrated changes in regional circulatory activity evoked by spinal cord and peripheral thermoreceptor stimulation. Brain Res. 1975 Apr 11;87(2-3):267–279. doi: 10.1016/0006-8993(75)90424-2. [DOI] [PubMed] [Google Scholar]
  12. Hirsch M. J., Growdon J. H., Wurtman R. J. Increase in hippocampal acetylcholine after choline administration. Brain Res. 1977 Apr 15;125(2):383–385. doi: 10.1016/0006-8993(77)90634-5. [DOI] [PubMed] [Google Scholar]
  13. Hirsch M. J., Wurtman R. J. Lecithin consumption increases acetylcholine concentrations in rat brain and adrenal gland. Science. 1978 Oct 13;202(4364):223–225. doi: 10.1126/science.694529. [DOI] [PubMed] [Google Scholar]
  14. Hoeldtke R., Lloyd T., Kaufman S. An immunochemical study of the induction of tyrosine hydroxylase in rat adrenal glands. Biochem Biophys Res Commun. 1974 Apr 23;57(4):1045–1053. doi: 10.1016/0006-291x(74)90802-x. [DOI] [PubMed] [Google Scholar]
  15. Joh T. H., Geghman C., Reis D. Immunochemical demonstration of increased accumulation of tyrosine hydroxylase protein in sympathetic ganglia and adrenal medulla elicited by reserpine. Proc Natl Acad Sci U S A. 1973 Oct;70(10):2767–2771. doi: 10.1073/pnas.70.10.2767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jänig W. Central organization of somatosympathetic reflexes in vasoconstrictor neurones. Brain Res. 1975 Apr 11;87(2-3):305–312. doi: 10.1016/0006-8993(75)90427-8. [DOI] [PubMed] [Google Scholar]
  17. Kendrick E., Oberg B., Wennergren G. Vasoconstrictor fibre discharge to skeletal muscle, kidney, intestine and skin at varying levels of arterial baroreceptor activity in the cat. Acta Physiol Scand. 1972 Aug;85(4):464–476. doi: 10.1111/j.1748-1716.1971.tb05284.x. [DOI] [PubMed] [Google Scholar]
  18. Korner P. I., Uther J. B. Reflex autonomic control of heart rate and peripheral blood flow. Brain Res. 1975 Apr 11;87(2-3):293–303. doi: 10.1016/0006-8993(75)90426-6. [DOI] [PubMed] [Google Scholar]
  19. Kvetnanský R., Gewirtz G. P., Weise V. K., Kopin I. J. Catecholamine-synthesizing enzymes in the rat adrenal gland during exposure to cold. Am J Physiol. 1971 Apr;220(4):928–931. doi: 10.1152/ajplegacy.1971.220.4.928. [DOI] [PubMed] [Google Scholar]
  20. Lynch H. J., Ho M., Wurtman R. J. The adrenal medulla may mediate the increase in pineal melatonin synthesis induced by stress, but not that caused by exposure to darkness. J Neural Transm. 1977;40(2):87–97. doi: 10.1007/BF01250561. [DOI] [PubMed] [Google Scholar]
  21. McKenzie G. M., Szerb J. C. The effect of dihydroxyphenylalanine, pheniprazine and dextroamphetamine on the in vivo release of dopamine from the caudate nucleus. J Pharmacol Exp Ther. 1968 Aug;162(2):302–308. [PubMed] [Google Scholar]
  22. Mueller R. A., Thoenen H., Axelrod J. Increase in tyrosine hydroxylase activity after reserpine administration. J Pharmacol Exp Ther. 1969 Sep;169(1):74–79. [PubMed] [Google Scholar]
  23. Mueller R. A., Thoenen H., Axelrod J. Inhiition of neuronally induced tyrosine hydroxylase by nitinic receptor blockade. Eur J Pharmacol. 1970 Apr;10(1):51–56. doi: 10.1016/0014-2999(70)90156-1. [DOI] [PubMed] [Google Scholar]
  24. Ninomiya I., Irisawa A., Nisimaru N. Nonuniformity of sympathetic nerve activity to the skin and kidney. Am J Physiol. 1973 Feb;224(2):256–264. doi: 10.1152/ajplegacy.1973.224.2.256. [DOI] [PubMed] [Google Scholar]
  25. Ninomiya I., Irisawa H. Non-uniformity of the sympathetic nerve activity in response to baroceptor inputs. Brain Res. 1975 Apr 11;87(2-3):313–322. doi: 10.1016/0006-8993(75)90428-x. [DOI] [PubMed] [Google Scholar]
  26. Patrick R. L., Kirshner N. Acetylcholine-induced stimulation of catecholamine recovery in denervated rat adrenals after reserpine-induced depletion. Mol Pharmacol. 1971 Jul;7(4):389–396. [PubMed] [Google Scholar]
  27. Quik M., Sourkes T. L. Central dopaminergic and serotoninergic systems in the regulation of adrenal tyrosine hydroxylase. J Neurochem. 1977 Jan;28(1):137–147. doi: 10.1111/j.1471-4159.1977.tb07719.x. [DOI] [PubMed] [Google Scholar]
  28. Scally M. C., Ulus I. H., Wurtman R. J. Choline administration to the rat increases urinary catecholamines. J Neural Transm. 1978;43(2):103–112. doi: 10.1007/BF01579069. [DOI] [PubMed] [Google Scholar]
  29. Simon E., Riedel W. Diversity of regional sympathetic outflow in integrative cardiovascular control: patterns and mechanisms. Brain Res. 1975 Apr 11;87(2-3):323–333. doi: 10.1016/0006-8993(75)90429-1. [DOI] [PubMed] [Google Scholar]
  30. Thoenen H. Induction of tyrosine hydroxylase in peripheral and central adrenergic neurones by cold-exposure of rats. Nature. 1970 Nov 28;228(5274):861–862. doi: 10.1038/228861a0. [DOI] [PubMed] [Google Scholar]
  31. Thoenen H., Mueller R. A., Axelrod J. Trans-synaptic induction of adrenal tyrosine hydroxylase. J Pharmacol Exp Ther. 1969 Oct;169(2):249–254. [PubMed] [Google Scholar]
  32. Thoenen H. Trans-synaptic enzyme induction. Life Sci. 1974 Jan 16;14(2):223–235. doi: 10.1016/0024-3205(74)90052-6. [DOI] [PubMed] [Google Scholar]
  33. Ulus I. H., Hirsch M. J., Wurtman R. J. Trans-synaptic induction of adrenomedullary tyrosine hydroxylase activity by choline: evidence that choline administration can increase cholinergic transmission. Proc Natl Acad Sci U S A. 1977 Feb;74(2):798–800. doi: 10.1073/pnas.74.2.798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Ulus I. H., Meyer E., Jr, Wurtman R. J., Lytle L. D. Trans-synaptic induction of adrenal tyrosine hydroxylase following amphetamine treatment in the rat. Neuropharmacology. 1977 Sep;16(9):635–637. doi: 10.1016/0028-3908(77)90035-1. [DOI] [PubMed] [Google Scholar]
  35. Ulus I. H., Scally M. C., Wurtman R. J. Choline potentiates the trans-synaptic induction of adrenal tyrosine hydroxylase by reserpine, probably by enhancing the release of acetylcholine. Life Sci. 1977 Jul 1;21(1):145–148. doi: 10.1016/0024-3205(77)90435-0. [DOI] [PubMed] [Google Scholar]
  36. Ulus I. H., Scally M. C., Wurtman R. J. Enhancement by choline of the induction of adrenal tyrosine hydroxylase by phenoxybenzamine, 6-hydroxydopamine, insulin or exposure to cold. J Pharmacol Exp Ther. 1978 Mar;204(3):676–682. [PubMed] [Google Scholar]
  37. Ulus I. H., Wurtman R. J. Choline administration: activation of tyrosine hydroxylase in dopaminergic neurons of rat brain. Science. 1976 Dec 3;194(4269):1060–1061. doi: 10.1126/science.10629. [DOI] [PubMed] [Google Scholar]
  38. Viveros O. H., Arqueros L., Connett R. J., Kirshner N. Mechanism of secretion from the adrenal medulla. IV. The fate of the storage vesicles following insulin and reserpine administration. Mol Pharmacol. 1969 Jan;5(1):69–82. [PubMed] [Google Scholar]
  39. WURTMAN R. J., AXELROD J., FISCHER J. E. MELATONIN SYNTHESIS IN THE PINEAL GLAND: EFFECT OF LIGHT MEDIATED BY THE SYMPATHETIC NERVOUS SYSTEM. Science. 1964 Mar 20;143(3612):1328–1330. [PubMed] [Google Scholar]
  40. Waymire J. C., Bjur R., Weiner N. Assay of tyrosine hydroxylase by coupled decarboxylation of DOPA formed from 1- 14 C-L-tyrosine. Anal Biochem. 1971 Oct;43(2):588–600. doi: 10.1016/0003-2697(71)90291-0. [DOI] [PubMed] [Google Scholar]
  41. Zigmond R. E., Ben-Ari Y. Electrical stimulation of preganglionic nerve increases tyrosine hydroxylase activity in sympathetic ganglia. Proc Natl Acad Sci U S A. 1977 Jul;74(7):3078–3080. doi: 10.1073/pnas.74.7.3078. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES