Abstract
The encephalographic problem of finding the electric potential V and the return current associated with any assumed primary current, Jp, is put in the form of a variational principle. With Jp and the conductivity specified, the correct V is one which makes an integral quantity P[V] a maximum. The terms in P[V] are related to the rates at which work is done by the electric field on the primary and return currents. It is shown that there is a unique solution for the electric field, and it satisfies the conservation of energy; this condition can serve as a check on any numerical solution. With the conductivity a different constant in different regions, the variational principle is recast in terms of the charge density on the surfaces of discontinuity. An iteration-variation method for finding the solution is outlined, and possible computational advantages over other approaches are discussed.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barnard A. C., Duck I. M., Lynn M. S. The application of electromagnetic theory to electrocardiology. I. Derivation of the integral equations. Biophys J. 1967 Sep;7(5):443–462. doi: 10.1016/S0006-3495(67)86598-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cuffin B. N., Cohen D. Magnetic fields of a dipole in special volume conductor shapes. IEEE Trans Biomed Eng. 1977 Jul;24(4):372–381. doi: 10.1109/TBME.1977.326145. [DOI] [PubMed] [Google Scholar]
- GELERNTER H. L., SWIHART J. C. A MATHEMATICAL-PHYSICAL MODEL OF THE GENESIS OF THE ELECTROCARDIOGRAM. Biophys J. 1964 Jul;4:285–301. doi: 10.1016/s0006-3495(64)86783-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Geselowitz D. B. On bioelectric potentials in an inhomogeneous volume conductor. Biophys J. 2008 Dec 31;7(1):1–11. doi: 10.1016/S0006-3495(67)86571-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hämäläinen M. S., Sarvas J. Realistic conductivity geometry model of the human head for interpretation of neuromagnetic data. IEEE Trans Biomed Eng. 1989 Feb;36(2):165–171. doi: 10.1109/10.16463. [DOI] [PubMed] [Google Scholar]
- Meijs J. W., Bosch F. G., Peters M. J., Lopes da Silva F. H. On the magnetic field distribution generated by a dipolar current source situated in a realistically shaped compartment model of the head. Electroencephalogr Clin Neurophysiol. 1987 Mar;66(3):286–298. doi: 10.1016/0013-4694(87)90078-2. [DOI] [PubMed] [Google Scholar]
- Pilkington T. C., Morrow M. N., Stanley P. C. A comparison of finite element and integral equation formulations for the calculation of electrocardiographic potentials. IEEE Trans Biomed Eng. 1985 Feb;32(2):166–173. [PubMed] [Google Scholar]
- Sarvas J. Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem. Phys Med Biol. 1987 Jan;32(1):11–22. doi: 10.1088/0031-9155/32/1/004. [DOI] [PubMed] [Google Scholar]
- Witwer J. G., Trezek G. J., Jewett D. L. The effect of media inhomogeneities upon intracranial electrical fields. IEEE Trans Biomed Eng. 1972 Sep;19(5):352–362. doi: 10.1109/TBME.1972.324138. [DOI] [PubMed] [Google Scholar]
- Yamashita Y., Takahashi T. Use of the finite element method to determine epicardial from body surface potentials under a realistic torso model. IEEE Trans Biomed Eng. 1984 Sep;31(9):611–621. doi: 10.1109/TBME.1984.325305. [DOI] [PubMed] [Google Scholar]
