Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1990 Mar;57(3):675–680. doi: 10.1016/S0006-3495(90)82587-X

On the modulation of a high-enthalpy pretransition in binary mixtures of DMPC and DMPG by polar headgroup interaction.

T M Bayerl 1, T Köchy 1, S Brückner 1
PMCID: PMC1280765  PMID: 2306513

Abstract

Employing high-sensitivity differential scanning calorimetry (DSC), we discovered a pretransition in binary mixtures of dimyristoyl phosphatidylcholine and dimyristoyl phosphatidylglycerol, the main feature of which is its extraordinarily high transition enthalpy of 6.3 Kcal/mol, nearly an order of magnitude higher than those values previously found for such transitions. Using DSC, deuterium nuclear magnetic resonance, and electron microscopy, it is shown that the energetic origin of this type of pretransition is caused by interactions between the phospholipids in their headgroup region. The most likely interaction involves the formation of a hydrogen bond between the headgroups of the two phospholipid species in the gel (L beta') phase which is disrupted at the transition to the "ripple" (P beta') phase. The finding that this large pretransition is unique for mixtures of phosphocholine and phosphoglycerol with myristoyl chains indicates a dependence of the headgroup long range order of such mixtures in the gel phase on the acyl chain length.

Full text

PDF
675

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boggs J. M. Lipid intermolecular hydrogen bonding: influence on structural organization and membrane function. Biochim Biophys Acta. 1987 Oct 5;906(3):353–404. doi: 10.1016/0304-4157(87)90017-7. [DOI] [PubMed] [Google Scholar]
  2. Davis J. H. Deuterium magnetic resonance study of the gel and liquid crystalline phases of dipalmitoyl phosphatidylcholine. Biophys J. 1979 Sep;27(3):339–358. doi: 10.1016/S0006-3495(79)85222-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Eibl H., Woolley P. Electrostatic interactions at charged lipid membranes. Hydrogen bonds in lipid membrane surfaces. Biophys Chem. 1979 Nov;10(3-4):261–271. doi: 10.1016/0301-4622(79)85015-2. [DOI] [PubMed] [Google Scholar]
  4. Eklund K. K., Virtanen J. A., Vuori K., Patrikainen J., Kinnunen P. K. Role of the polar head group stereoconfiguration in the cation-induced aggregation of dimyristoylphosphatidylglycerol vesicles. Biochemistry. 1987 Dec 1;26(24):7542–7545. doi: 10.1021/bi00398a002. [DOI] [PubMed] [Google Scholar]
  5. Findlay E. J., Barton P. G. Phase behavior of synthetic phosphatidylglycerols and binary mixtures with phosphatidylcholines in the presence and absence of calcium ions. Biochemistry. 1978 Jun 13;17(12):2400–2405. doi: 10.1021/bi00605a023. [DOI] [PubMed] [Google Scholar]
  6. Finegold L., Singer M. A. The metastability of saturated phosphatidylcholines depends on the acyl chain length. Biochim Biophys Acta. 1986 Mar 13;855(3):417–420. doi: 10.1016/0005-2736(86)90086-6. [DOI] [PubMed] [Google Scholar]
  7. Janiak M. J., Small D. M., Shipley G. G. Nature of the Thermal pretransition of synthetic phospholipids: dimyristolyl- and dipalmitoyllecithin. Biochemistry. 1976 Oct 19;15(21):4575–4580. doi: 10.1021/bi00666a005. [DOI] [PubMed] [Google Scholar]
  8. Lewis R. N., Mak N., McElhaney R. N. A differential scanning calorimetric study of the thermotropic phase behavior of model membranes composed of phosphatidylcholines containing linear saturated fatty acyl chains. Biochemistry. 1987 Sep 22;26(19):6118–6126. doi: 10.1021/bi00393a026. [DOI] [PubMed] [Google Scholar]
  9. Madden T. D., Tilcock C. P., Wong K., Cullis P. R. Spontaneous vesiculation of large multilamellar vesicles composed of saturated phosphatidylcholine and phosphatidylglycerol mixtures. Biochemistry. 1988 Nov 29;27(24):8724–8730. doi: 10.1021/bi00424a006. [DOI] [PubMed] [Google Scholar]
  10. Pascher I., Sundell S., Harlos K., Eibl H. Conformation and packing properties of membrane lipids: the crystal structure of sodium dimyristoylphosphatidylglycerol. Biochim Biophys Acta. 1987 Jan 9;896(1):77–88. doi: 10.1016/0005-2736(87)90358-0. [DOI] [PubMed] [Google Scholar]
  11. Rand R. P., Chapman D., Larsson K. Tilted hydrocarbon chains of dipalmitoyl lecithin become perpendicular to the bilayer before melting. Biophys J. 1975 Nov;15(11):1117–1124. doi: 10.1016/S0006-3495(75)85888-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Slater J. L., Huang C. H. Interdigitated bilayer membranes. Prog Lipid Res. 1988;27(4):325–359. doi: 10.1016/0163-7827(88)90010-0. [DOI] [PubMed] [Google Scholar]
  13. Tardieu A., Luzzati V., Reman F. C. Structure and polymorphism of the hydrocarbon chains of lipids: a study of lecithin-water phases. J Mol Biol. 1973 Apr 25;75(4):711–733. doi: 10.1016/0022-2836(73)90303-3. [DOI] [PubMed] [Google Scholar]
  14. Wilkinson D. A., Tirrell D. A., Turek A. B., McIntosh T. J. Tris buffer causes acyl chain interdigitation in phosphatidylglycerol. Biochim Biophys Acta. 1987 Dec 11;905(2):447–453. doi: 10.1016/0005-2736(87)90474-3. [DOI] [PubMed] [Google Scholar]
  15. van Dijck P. W., de Kruijff B., Verkleij A. J., van Deenen L. L., de Gier J. Comparative studies on the effects of pH and Ca2+ on bilayers of various negatively charged phospholipids and their mixtures with phosphatidylcholine. Biochim Biophys Acta. 1978 Sep 11;512(1):84–96. doi: 10.1016/0005-2736(78)90219-5. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES