Abstract
Evidence is presented for the existence of two forms of low-potential cytochrome a3. One appears to be similar to the low-spin form reported by Nicholls, P., and V. Hildebrandt (1978 Biochem. J. 173:65-72) and Wrigglesworth, J. M., J. Elsden, A. Chapman, N. Van der Water, and M. F. Grahn (1988. Biochim. Biophys. Acta. 936:452-464). It has a reduced Soret peak near 428 nm and a prominent alpha peak near 602 nm. This form is seen when the enzyme is either supplemented with lipoprotein or incorporated into a liposomal membrane, preexposed to a voltage greater than 400 mV for at least 30 min, and titrated in the presence of approximately 1 mM K3Fe(CN)6. The other form has a reduced Soret peak near 446 nm, and no prominent alpha peak. The 428-nm form has an Em near 175 mV and forms a CO complex with an Em near 225 mV. The 446-nm form has an Em near 200 mV and forms a CO complex with an Em near 335 mV.
Full text
PDF















Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baker G. M., Noguchi M., Palmer G. The reaction of cytochrome oxidase with cyanide. Preparation of the rapidly reacting form and its conversion to the slowly reacting form. J Biol Chem. 1987 Jan 15;262(2):595–604. [PubMed] [Google Scholar]
- Brunori M., Antonini G., Malatesta F., Sarti P., Wilson M. T. Structure and function of cytochrome oxidase: a second look. Adv Inorg Biochem. 1988;7:93–153. [PubMed] [Google Scholar]
- Carithers R. P., Palmer G. Characterization of the potentiometric behavior of soluble cytochrome oxidase by magnetic circular dichroism. Evidence in support of heme-heme interaction. J Biol Chem. 1981 Aug 10;256(15):7967–7976. [PubMed] [Google Scholar]
- Chance B., Saronio C., Leigh J. S., Jr Functional intermediates in the reaction of membrane-bound cytochrome oxidase with oxygen. J Biol Chem. 1975 Dec 25;250(24):9226–9237. [PubMed] [Google Scholar]
- Clore G. M., Andréasson L. E., Karlsson B., Aasa R., Malmström B. G. Characterization of the intermediates in the reaction of mixed-valence state soluble cytochrome oxidase with oxygen at low temperatures by optical and electron-paramagnetic-resonance spectroscopy. Biochem J. 1980 Jan 1;185(1):155–167. doi: 10.1042/bj1850155. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Einarsdóttir O., Caughey W. S. Bovine heart cytochrome c oxidase preparations contain high affinity binding sites for magnesium as well as for zinc, copper, and heme iron. Biochem Biophys Res Commun. 1985 Jun 28;129(3):840–847. doi: 10.1016/0006-291x(85)91968-0. [DOI] [PubMed] [Google Scholar]
- Ellis W. R., Jr, Wang H., Blair D. F., Gray H. B., Chan S. I. Spectroelectrochemical study of the cytochrome a site in carbon monoxide inhibited cytochrome c oxidase. Biochemistry. 1986 Jan 14;25(1):161–167. doi: 10.1021/bi00349a023. [DOI] [PubMed] [Google Scholar]
- HORIE S., MORRISON M. Cytochrome c oxidase components. I. Purification and properties. J Biol Chem. 1963 May;238:1855–1860. [PubMed] [Google Scholar]
- Hartzell C. R., Beinert H. Oxido-reductive titrations of cytochrome c oxidase followed by EPR spectroscopy. Biochim Biophys Acta. 1976 Feb 16;423(2):323–338. doi: 10.1016/0005-2728(76)90189-4. [DOI] [PubMed] [Google Scholar]
- Hendler R. W., Reddy K. V., Shrager R. I., Caughey W. S. Analysis of the spectra and redox properties of pure cytochromes aa3. Biophys J. 1986 Mar;49(3):717–729. doi: 10.1016/S0006-3495(86)83698-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hendler R. W., Sidhu G. S. A new high potential redox transition for cytochrome aa3. Biophys J. 1988 Jul;54(1):121–133. doi: 10.1016/S0006-3495(88)82937-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hinkle P. C., Kim J. J., Racker E. Ion transport and respiratory control in vesicles formed from cytochrome oxidase and phospholipids. J Biol Chem. 1972 Feb 25;247(4):1338–1339. [PubMed] [Google Scholar]
- Leigh J. S., Jr, Wilson D. F., Owen C. S., King T. E. Heme-heme interaction in cytochrome c oxidase: the cooperativity of the hemes of cytochrome c oxidase as evidenced in the reaction with CO. Arch Biochem Biophys. 1974 Feb;160(2):476–486. doi: 10.1016/0003-9861(74)90424-x. [DOI] [PubMed] [Google Scholar]
- Lindsay J. G., Owen C. S., Wilson D. F. The invisible copper of cytochrome c oxidase. pH and ATP dependence of its midpoint potential and its role in the oxygen reaction. Arch Biochem Biophys. 1975 Aug;169(2):492–505. doi: 10.1016/0003-9861(75)90192-7. [DOI] [PubMed] [Google Scholar]
- Naqui A., Kumar C., Ching Y. C., Powers L., Chance B. Structure and reactivity of multiple forms of cytochrome oxidase as evaluated by X-ray absorption spectroscopy and kinetics of cyanide binding. Biochemistry. 1984 Dec 4;23(25):6222–6227. doi: 10.1021/bi00320a051. [DOI] [PubMed] [Google Scholar]
- Nicholls P., Hildebrandt V. Binding of ligands and spectral shifts in cytochrome c oxidase. Biochem J. 1978 Jul 1;173(1):65–72. doi: 10.1042/bj1730065. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nicholls P., Petersen L. C. Haem-haem interactions in cytochrome aa3 during the anaerobic-aerobic transition. Biochim Biophys Acta. 1974 Sep 20;357(3):462–467. doi: 10.1016/0005-2728(74)90038-3. [DOI] [PubMed] [Google Scholar]
- Nicholls P., Wrigglesworth J. M. Routes of cytochrome a3 reduction. The neoclassical model revisited. Ann N Y Acad Sci. 1988;550:59–67. doi: 10.1111/j.1749-6632.1988.tb35323.x. [DOI] [PubMed] [Google Scholar]
- Reddy K. V., Hendler R. W., Bunow B. Complete analysis of the cytochrome components of beef heart mitochondria in terms of spectra and redox properties. Cytochromes aa3. Biophys J. 1986 Mar;49(3):705–715. doi: 10.1016/S0006-3495(86)83697-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reddy K. V., Hendler R. W. Complete analysis of the cytochrome components of beef heart mitochondria in terms of spectra and redox properties. The c1-cytochromes. Biophys J. 1986 Mar;49(3):693–703. doi: 10.1016/S0006-3495(86)83696-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schroedl N. A., Hartzell C. R. Oxidative titrations of reduced cytochrome aa3: correlation of midpoint potentials and extinction coefficients observed at three major absorption bands. Biochemistry. 1977 Nov 15;16(23):4961–4965. doi: 10.1021/bi00642a003. [DOI] [PubMed] [Google Scholar]
- Shrager R. I., Hendler R. W. Processing and analysis of potentiometric data. Biophys J. 1986 Mar;49(3):687–691. doi: 10.1016/S0006-3495(86)83695-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steffens G. C., Biewald R., Buse G. Cytochrome c oxidase is a three-copper, two-heme-A protein. Eur J Biochem. 1987 Apr 15;164(2):295–300. doi: 10.1111/j.1432-1033.1987.tb11057.x. [DOI] [PubMed] [Google Scholar]
- Tiesjema R. H., Muijsers A. O., van Gelder B. F. Biochemical and biophysical studies on cytochrome c oxidase. X. Spectral and potentiometric properties of the hemes and coppers. Biochim Biophys Acta. 1973 Apr 27;305(1):19–28. doi: 10.1016/0005-2728(73)90227-2. [DOI] [PubMed] [Google Scholar]
- Wever R., Van Drooge J. H., Muijsers A. O., Bakker E. P., Van Gelker B. F. The binding of carbon monoxide to cytochrome c oxidase. Eur J Biochem. 1977 Feb 15;73(1):149–154. doi: 10.1111/j.1432-1033.1977.tb11301.x. [DOI] [PubMed] [Google Scholar]
- Wever R., van Drooge J. H., van Ark G., van Gelder B. F. Biochemical and biophysical studies on cytochrome c oxidase. XVII. An epr study of the photodissociation of cytochrome a32+-CO. Biochim Biophys Acta. 1974 May 22;347(2):215–223. doi: 10.1016/0005-2728(74)90046-2. [DOI] [PubMed] [Google Scholar]
- Wikström K. F., Harmon H. J., Ingledew W. J., Chance B. A re-evaluation of the spectral, potentiometric and energy-linked properties of cytochrome c oxidase in mitochondria. FEBS Lett. 1976 Jun 15;65(3):259–277. doi: 10.1016/0014-5793(76)80127-5. [DOI] [PubMed] [Google Scholar]
- Wilson D. F., Leigh J. S. Heme-heme interaction between the cytochromes of the mitochondrial respiratory chain. Ann N Y Acad Sci. 1974 Feb 18;227:630–635. doi: 10.1111/j.1749-6632.1974.tb14427.x. [DOI] [PubMed] [Google Scholar]
- Wilson D. F., Lindsay J. G., Brocklehurst E. S. Heme-heme interaction in cytochrome oxidase. Biochim Biophys Acta. 1972 Feb 28;256(2):277–286. doi: 10.1016/0005-2728(72)90058-8. [DOI] [PubMed] [Google Scholar]
- Wrigglesworth J. M., Elsden J., Chapman A., Van der Water N., Grahn M. F. Activation by reduction of the resting form of cytochrome c oxidase: tests of different models and evidence for the involvement of CuB. Biochim Biophys Acta. 1988 Dec 7;936(3):452–464. doi: 10.1016/0005-2728(88)90023-0. [DOI] [PubMed] [Google Scholar]
- Wrigglesworth J. M., Wooster M. S., Elsden J., Danneel H. J. Dynamics of proteoliposome formation. Intermediate states during detergent dialysis. Biochem J. 1987 Sep 15;246(3):737–744. doi: 10.1042/bj2460737. [DOI] [PMC free article] [PubMed] [Google Scholar]
- YONETANI T. Studies on cytochrome oxidase. III. Improved preparation and some properties. J Biol Chem. 1961 Jun;236:1680–1688. [PubMed] [Google Scholar]
- Yoshikawa S., Choc M. G., O'Toole M. C., Caughey W. S. An infrared study of CO binding to heart cytochrome c oxidase and hemoglobin A. Implications re O2 reactions. J Biol Chem. 1977 Aug 10;252(15):5498–5508. [PubMed] [Google Scholar]
- Yoshikawa S., Tera T., Takahashi Y., Tsukihara T., Caughey W. S. Crystalline cytochrome c oxidase of bovine heart mitochondrial membrane: composition and x-ray diffraction studies. Proc Natl Acad Sci U S A. 1988 Mar;85(5):1354–1358. doi: 10.1073/pnas.85.5.1354. [DOI] [PMC free article] [PubMed] [Google Scholar]