Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1979 Jul;292:233–249. doi: 10.1113/jphysiol.1979.sp012848

Responses in the diagonal band of Broca evoked by stimulation of the fornix in the cat.

J I Hubbard, R G Mills, N E Sirett
PMCID: PMC1280855  PMID: 490352

Abstract

1. Field potentials were recorded within the boundaries of the septal component of the diagonal band of Broca following stimulation of the fornix. The position of the recording electrode was marked by pressure injection of Alcian blue dye. 2. Stimulation of the medial aspect of the ipsilateral fornix produced a simple field caudally consisting of a short duration, short latency negative wave (N1) and a later small prolonged positive wave (P1). It is suggested that N1 is due to antidromic activation of the cells and P1 to their recurrent inhibition. 3. In the rostral part of the septal component of the diagonal band of Broca the field pattern was more complex, containing, in addition to N1 and P1, further negative waves, N2 and N3. N2 was compounded of antidromically and synaptically evoked components and N3 was associated with monosynaptic excitation of the cells. 4. Stimulation of the lateral margin of the fornix was shown to excite antidromically and synaptically the same cells as were excited by stimulation of the medial aspect of the fornix. 5. Stimulation of the medial and lateral aspects of contralateral fornix generated positive waves of similar character to P1. 6. Intracarotid injection of hyperosmotic saline solution caused behavioural signs of arousal and inhibition of spontaneous discharge in a third of the units tested. Spontaneously discharging units (mean frequency +/- S.E. of mean, 13.4 +/- 1.8, n = 55) were inhibited by stimulation of the medial and lateral ipsilateral and contralateral fornix. It is suggested that inhibitory interneurones receive contra- and ipsilateral input. Units with these characteristics were found. 7. The septal component of the diagonal band of Broca was compared with other septal nuclei and found to resemble them in its rostral portion in that it has a reciprocal relationship with ventral and dorsal hippocampus. The caudal portion is unique in the cells project to dorsal and ventral hippocampus but there is no reciprocal projection.

Full text

PDF
233

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anchel H., Lindsley D. B. Differentiation of two reticulo-hypothalamic systems regulating hippocampal activity. Electroencephalogr Clin Neurophysiol. 1972 Mar;32(3):209–226. doi: 10.1016/0013-4694(72)90171-x. [DOI] [PubMed] [Google Scholar]
  2. DAITZ H. M., POWELL T. P. Studies of the connexions of the fornix system. J Neurol Neurosurg Psychiatry. 1954 Feb;17(1):75–82. doi: 10.1136/jnnp.17.1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. DARIAN-SMITH I., PHILLIPS G., RYAN R. D. FUNCTIONAL ORGANIZATION IN THE TRIGEMINAL MAIN SENSORY AND ROSTRAL SPINAL NUCLEI OF THE CAT. J Physiol. 1963 Aug;168:129–146. doi: 10.1113/jphysiol.1963.sp007182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. DeFrance J. F., Shimono T., Kitai S. T. Anatomical distribution of the hippocampal fibers afferent to the lateral septal nucleus. Brain Res. 1971 Nov;34(1):176–180. doi: 10.1016/0006-8993(71)90359-3. [DOI] [PubMed] [Google Scholar]
  5. DeFrance J. F., Shimono T., Kitai S. T. Hippocampal inputs to the lateral septal nucleus: patterns of facilitation and inhibition. Brain Res. 1972 Feb 25;37(2):333–339. doi: 10.1016/0006-8993(72)90681-6. [DOI] [PubMed] [Google Scholar]
  6. DeFrance J. F., Yoshihara H., Chronister R. B. Electrophysiological studies of the septal nuclei. II. The medial septal region. Exp Neurol. 1978 Jan 1;58(1):14–31. doi: 10.1016/0014-4886(78)90117-6. [DOI] [PubMed] [Google Scholar]
  7. DeFrance J. F., Yoshihara H., Chronister R. B. Electrophysiological studies of the septal nuclei: I. The lateral septal region. Exp Neurol. 1976 Nov;53(2):399–419. doi: 10.1016/0014-4886(76)90081-9. [DOI] [PubMed] [Google Scholar]
  8. DeFrance J. F., Yoshihara H., McCrea R. A., Kitai S. T. Pharmacology of the inhibiton in the lateral septal region. Exp Neurol. 1975 Sep;48(3 Pt 1):502–523. doi: 10.1016/0014-4886(75)90009-6. [DOI] [PubMed] [Google Scholar]
  9. DeFrance J. F., Yoshihara H. Medial forebrain bundle projections to the nucleus of the diagonal band of Broca. Experientia. 1975 Jul 15;31(7):809–810. doi: 10.1007/BF01938477. [DOI] [PubMed] [Google Scholar]
  10. Edinger H., Siegel A., Troiano R. Single unit analysis of the hippocampal projections to the septum in the cat. Exp Neurol. 1973 Dec;41(3):569–583. doi: 10.1016/0014-4886(73)90051-4. [DOI] [PubMed] [Google Scholar]
  11. Freeman W. J., Patel H. H. Extraneuronal potential fields evoked in septal region of cat by stimulation of fornix. Electroencephalogr Clin Neurophysiol. 1968 May;24(5):444–457. doi: 10.1016/0013-4694(68)90104-1. [DOI] [PubMed] [Google Scholar]
  12. GREEN J. D., ARDUINI A. A. Hippocampal electrical activity in arousal. J Neurophysiol. 1954 Nov;17(6):533–557. doi: 10.1152/jn.1954.17.6.533. [DOI] [PubMed] [Google Scholar]
  13. Hayward J. N., Vincent J. D. Osmosensitive single neurones in the hypothalamus of unanaesthetized monkeys. J Physiol. 1970 Nov;210(4):947–972. doi: 10.1113/jphysiol.1970.sp009251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. KILLAM E. K. Drug action on the brain-stem reticular formation. Pharmacol Rev. 1962 Jun;14:175–223. [PubMed] [Google Scholar]
  15. Lee B. B., Mandl G., Stean J. P. Micro-electrode tip position marking in nervous tissue: a new dye method. Electroencephalogr Clin Neurophysiol. 1969 Dec;27(6):610–613. doi: 10.1016/0013-4694(69)90075-3. [DOI] [PubMed] [Google Scholar]
  16. Lewis P. R., Shute C. C. The cholinergic limbic system: projections to hippocampal formation, medial cortex, nuclei of the ascending cholinergic reticular system, and the subfornical organ and supra-optic crest. Brain. 1967 Sep;90(3):521–540. doi: 10.1093/brain/90.3.521. [DOI] [PubMed] [Google Scholar]
  17. McLennan H., Miller J. J. The hippocampal control of neuronal discharges in the septum of the rat. J Physiol. 1974 Mar;237(3):607–624. doi: 10.1113/jphysiol.1974.sp010500. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. PETSCHE H., STUMPF C., GOGOLAK G. [The significance of the rabbit's septum as a relay station between the midbrain and the hippocampus. I. The control of hippocampus arousal activity by the septum cells]. Electroencephalogr Clin Neurophysiol. 1962 Apr;14:202–211. doi: 10.1016/0013-4694(62)90030-5. [DOI] [PubMed] [Google Scholar]
  19. Powell E. W., Clark W. M., Mukawa J. An evoked potential study of limbic projections to nuclei of the cat septum. Electroencephalogr Clin Neurophysiol. 1968 Sep;25(3):266–273. doi: 10.1016/0013-4694(68)90025-4. [DOI] [PubMed] [Google Scholar]
  20. STUMPF C. THE FAST COMPONENT IN THE ELECTRICAL ACTIVITY OF RABBIT'S HIPPOCAMPUS. Electroencephalogr Clin Neurophysiol. 1965 Apr;18:477–486. doi: 10.1016/0013-4694(65)90128-8. [DOI] [PubMed] [Google Scholar]
  21. Siegel A., Tassoni J. P. Differential efferent projections from the ventral and dorsal hippocampus of the cat. Brain Behav Evol. 1971;4(3):185–200. doi: 10.1159/000125433. [DOI] [PubMed] [Google Scholar]
  22. VALENSTEIN E. S., NAUTA W. J. A comparison of the distribution of the fornix system in the rat, guinea pig, cat, and monkey. J Comp Neurol. 1959 Dec;113:337–363. doi: 10.1002/cne.901130302. [DOI] [PubMed] [Google Scholar]
  23. Wilson C. L., Motter B. C., Lindsley D. B. Influences of hypothalamic stimulation upon septal and hippocampal electrical activity in the cat. Brain Res. 1976 Apr 30;107(1):55–68. doi: 10.1016/0006-8993(76)90095-0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES